TY - GEN
T1 - Stable principal component pursuit
AU - Zhou, Zihan
AU - Li, Xiaodong
AU - Wright, John
AU - Candès, Emmanuel
AU - Ma, Yi
PY - 2010
Y1 - 2010
N2 - In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entry-wise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is the first result that shows the classical Principal Component Analysis (PCA), optimal for small i.i.d. noise, can be made robust to gross sparse errors; or the first that shows the newly proposed PCP can be made stable to small entry-wise perturbations.
AB - In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entry-wise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is the first result that shows the classical Principal Component Analysis (PCA), optimal for small i.i.d. noise, can be made robust to gross sparse errors; or the first that shows the newly proposed PCP can be made stable to small entry-wise perturbations.
UR - http://www.scopus.com/inward/record.url?scp=77955670622&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955670622&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2010.5513535
DO - 10.1109/ISIT.2010.5513535
M3 - Conference contribution
AN - SCOPUS:77955670622
SN - 9781424469604
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 1518
EP - 1522
BT - 2010 IEEE International Symposium on Information Theory, ISIT 2010 - Proceedings
T2 - 2010 IEEE International Symposium on Information Theory, ISIT 2010
Y2 - 13 June 2010 through 18 June 2010
ER -