StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris N. Metaxas

Research output: Contribution to journalArticlepeer-review

154 Scopus citations

Abstract

Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGANs) aimed at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of a scene based on a given text description, yielding low-resolution images. The Stage-II GAN takes Stage-I results and the text description as inputs, and generates high-resolution images with photo-realistic details. Second, an advanced multi-stage generative adversarial network architecture, StackGAN-v2, is proposed for both conditional and unconditional generative tasks. Our StackGAN-v2 consists of multiple generators and multiple discriminators arranged in a tree-like structure; images at multiple scales corresponding to the same scene are generated from different branches of the tree. StackGAN-v2 shows more stable training behavior than StackGAN-v1 by jointly approximating multiple distributions. Extensive experiments demonstrate that the proposed stacked generative adversarial networks significantly outperform other state-of-the-art methods in generating photo-realistic images.

Original languageEnglish (US)
Article number8411144
Pages (from-to)1947-1962
Number of pages16
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume41
Issue number8
DOIs
StatePublished - Aug 1 2019

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition
  • Computational Theory and Mathematics
  • Artificial Intelligence
  • Applied Mathematics

Fingerprint Dive into the research topics of 'StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks'. Together they form a unique fingerprint.

Cite this