State-space supervision of reconfigurable discrete event systems

Humberto E. Garcia, Asok Ray

    Research output: Contribution to journalArticle

    Abstract

    The Discrete Event Systems (DES) theory of supervisory and state feedback control offers many advantages for implementing supervisory systems. Algorithmic concepts have been introduced to assure that the supervising algorithms are correct and meet the specifications. It is often assumed that the supervisory specifications are invariant or, at least, until a given supervisory task is completed. However, there are many practical applications where the supervising specifications update at real time. For example, in a Reconfigurable Discrete Event System (RDES) architecture, a bank of supervisors is defined to accommodate each identified operational condition or different supervisory specifications. This adaptive supervisory control system changes its supervisory configuration to accept coordinating commands or to adjust for changes in the controlled process. This paper addresses reconfiguration at the supervisory level of hybrid systems along with a RDES underlying architecture. It reviews the state-based supervisory control theory and extends it to the paradigm of RDES and in view of process control applications. The paper addresses theoretical issues with a limited number of practical examples. Due to page limitation, all the proofs are omitted but can be found in [3]. This control approach is particularly suitable for hierarchical reconfigurable hybrid implementations as those in [4].

    Original languageEnglish (US)
    Pages (from-to)433-438
    Number of pages6
    JournalProceedings of the IEEE Conference on Decision and Control
    Volume1
    StatePublished - 1995

    All Science Journal Classification (ASJC) codes

    • Chemical Health and Safety
    • Control and Systems Engineering
    • Safety, Risk, Reliability and Quality

    Fingerprint Dive into the research topics of 'State-space supervision of reconfigurable discrete event systems'. Together they form a unique fingerprint.

  • Cite this