STIM/Orai signalling complexes in vascular smooth muscle

Research output: Contribution to journalReview articlepeer-review

60 Scopus citations

Abstract

Stromal interaction molecules (STIM1 and STIM2) are single pass transmembrane proteins located mainly in the endoplasmic reticulum (ER). STIM proteins contain an EF-hand in their N-termini that faces the lumen side of the ER allowing them to act as ER calcium (Ca2+) sensors. STIM1 has been recognized as central to the activation of the highly Ca2+ selective store-operated Ca2+ (SOC) entry current mediated by the Ca2+ release-activated Ca2+ (CRAC) channel; CRAC channels are formed by tetramers of the plasma membrane (PM) protein Orai1. Physiologically, the production of inositol 1,4,5-trisphosphate (IP3) upon stimulation of phospholipase C-coupled receptors and the subsequent emptying of IP3-sensitive ER Ca2+ stores are sensed by STIM1 molecules which aggregate and move closer to the PM to interact physically with Orai1 channels and activate Ca2+ entry. Orai1 has two homologous proteins encoded by separate genes, Orai2 and Orai3. Other modes of receptor-regulated Ca2+ entry into cells are store-independent; for example, arachidonic acid activates a highly Ca2+ selective store-independent channel formed by heteropentamers of Orai1 and Orai3 and regulated by the PM pool of STIM1. Here, I will discuss results pertaining to the roles of STIM and Orai proteins in smooth muscle Ca2+ entry pathways and their role in vascular remodelling.

Original languageEnglish (US)
Pages (from-to)4201-4208
Number of pages8
JournalJournal of Physiology
Volume590
Issue number17
DOIs
StatePublished - Sep 2012

All Science Journal Classification (ASJC) codes

  • Physiology

Fingerprint Dive into the research topics of 'STIM/Orai signalling complexes in vascular smooth muscle'. Together they form a unique fingerprint.

Cite this