Strategy for tuning the up-conversion intersystem crossing rates in a series of organic light-emitting diodes emitters relevant for thermally activated delayed fluorescence

Qiuling Zhu, Songyan Feng, Xugeng Guo, Xing Chen, Jinglai Zhang

Research output: Contribution to journalArticle

Abstract

Accurate prediction on the up-conversion intersystem crossing rate (kUISC) is a critical issue for the molecular design of an efficient thermally activated delayed fluorescence (TADF) emitter, and the kUISC rate is considered to be mainly determined by the spin-orbit coupling matrix element (SOCME) and the singlet-triplet energy difference (∆EST). In the present contribution, we strategically designed a series of organic molecules, bearing an isoindole-dione core as the electron acceptor (A) unit and dinitrocarbazolyl, carbazolyl, diphenylcarbazolyl, dicarbazolyl and tercarbazolyl groups as the electron donor (D) units, respectively. Their SOCME and ∆EST values between the S1 and T1 states were calculated by the DFT and TD-DFT methodes, and the kUISC rates were estimated by using the semiclassical Marcus theory. The present studies indicate that as the π-conjugation in the D unit enhances, the ∆EST value gradually decreases, and the kUISC rate gradually increases. The molecule using tercarbazolyl as the D moiety is found to exhibit the largest kUISC in the present computations, as high as 1.22 × 106 s−1, which is of the same order of magnitude as an experimentally observed highly-efficient TADF emitter using a 4-benzoylpyridine as the A unit and the same tercarbazolyl group as the D moiety. The present results sufficiently prove the necessity of introducing strong electron-rich substituent groups when designing highly efficient TADF emitters.

Original languageEnglish (US)
Article number117214
JournalSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Volume221
DOIs
StatePublished - Oct 5 2019

Fingerprint

Organic light emitting diodes (OLED)
emitters
light emitting diodes
Tuning
Fluorescence
tuning
Discrete Fourier transforms
fluorescence
Electrons
Orbits
Bearings (structural)
Isoindoles
Molecules
orbits
electrons
Dione
matrices
conjugation
molecules
predictions

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Spectroscopy

Cite this

@article{33bcd45868444d82b08a54c7cb0e126f,
title = "Strategy for tuning the up-conversion intersystem crossing rates in a series of organic light-emitting diodes emitters relevant for thermally activated delayed fluorescence",
abstract = "Accurate prediction on the up-conversion intersystem crossing rate (kUISC) is a critical issue for the molecular design of an efficient thermally activated delayed fluorescence (TADF) emitter, and the kUISC rate is considered to be mainly determined by the spin-orbit coupling matrix element (SOCME) and the singlet-triplet energy difference (∆EST). In the present contribution, we strategically designed a series of organic molecules, bearing an isoindole-dione core as the electron acceptor (A) unit and dinitrocarbazolyl, carbazolyl, diphenylcarbazolyl, dicarbazolyl and tercarbazolyl groups as the electron donor (D) units, respectively. Their SOCME and ∆EST values between the S1 and T1 states were calculated by the DFT and TD-DFT methodes, and the kUISC rates were estimated by using the semiclassical Marcus theory. The present studies indicate that as the π-conjugation in the D unit enhances, the ∆EST value gradually decreases, and the kUISC rate gradually increases. The molecule using tercarbazolyl as the D moiety is found to exhibit the largest kUISC in the present computations, as high as 1.22 × 106 s−1, which is of the same order of magnitude as an experimentally observed highly-efficient TADF emitter using a 4-benzoylpyridine as the A unit and the same tercarbazolyl group as the D moiety. The present results sufficiently prove the necessity of introducing strong electron-rich substituent groups when designing highly efficient TADF emitters.",
author = "Qiuling Zhu and Songyan Feng and Xugeng Guo and Xing Chen and Jinglai Zhang",
year = "2019",
month = "10",
day = "5",
doi = "10.1016/j.saa.2019.117214",
language = "English (US)",
volume = "221",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
issn = "1386-1425",
publisher = "Elsevier",

}

TY - JOUR

T1 - Strategy for tuning the up-conversion intersystem crossing rates in a series of organic light-emitting diodes emitters relevant for thermally activated delayed fluorescence

AU - Zhu, Qiuling

AU - Feng, Songyan

AU - Guo, Xugeng

AU - Chen, Xing

AU - Zhang, Jinglai

PY - 2019/10/5

Y1 - 2019/10/5

N2 - Accurate prediction on the up-conversion intersystem crossing rate (kUISC) is a critical issue for the molecular design of an efficient thermally activated delayed fluorescence (TADF) emitter, and the kUISC rate is considered to be mainly determined by the spin-orbit coupling matrix element (SOCME) and the singlet-triplet energy difference (∆EST). In the present contribution, we strategically designed a series of organic molecules, bearing an isoindole-dione core as the electron acceptor (A) unit and dinitrocarbazolyl, carbazolyl, diphenylcarbazolyl, dicarbazolyl and tercarbazolyl groups as the electron donor (D) units, respectively. Their SOCME and ∆EST values between the S1 and T1 states were calculated by the DFT and TD-DFT methodes, and the kUISC rates were estimated by using the semiclassical Marcus theory. The present studies indicate that as the π-conjugation in the D unit enhances, the ∆EST value gradually decreases, and the kUISC rate gradually increases. The molecule using tercarbazolyl as the D moiety is found to exhibit the largest kUISC in the present computations, as high as 1.22 × 106 s−1, which is of the same order of magnitude as an experimentally observed highly-efficient TADF emitter using a 4-benzoylpyridine as the A unit and the same tercarbazolyl group as the D moiety. The present results sufficiently prove the necessity of introducing strong electron-rich substituent groups when designing highly efficient TADF emitters.

AB - Accurate prediction on the up-conversion intersystem crossing rate (kUISC) is a critical issue for the molecular design of an efficient thermally activated delayed fluorescence (TADF) emitter, and the kUISC rate is considered to be mainly determined by the spin-orbit coupling matrix element (SOCME) and the singlet-triplet energy difference (∆EST). In the present contribution, we strategically designed a series of organic molecules, bearing an isoindole-dione core as the electron acceptor (A) unit and dinitrocarbazolyl, carbazolyl, diphenylcarbazolyl, dicarbazolyl and tercarbazolyl groups as the electron donor (D) units, respectively. Their SOCME and ∆EST values between the S1 and T1 states were calculated by the DFT and TD-DFT methodes, and the kUISC rates were estimated by using the semiclassical Marcus theory. The present studies indicate that as the π-conjugation in the D unit enhances, the ∆EST value gradually decreases, and the kUISC rate gradually increases. The molecule using tercarbazolyl as the D moiety is found to exhibit the largest kUISC in the present computations, as high as 1.22 × 106 s−1, which is of the same order of magnitude as an experimentally observed highly-efficient TADF emitter using a 4-benzoylpyridine as the A unit and the same tercarbazolyl group as the D moiety. The present results sufficiently prove the necessity of introducing strong electron-rich substituent groups when designing highly efficient TADF emitters.

UR - http://www.scopus.com/inward/record.url?scp=85066328960&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85066328960&partnerID=8YFLogxK

U2 - 10.1016/j.saa.2019.117214

DO - 10.1016/j.saa.2019.117214

M3 - Article

C2 - 31158761

AN - SCOPUS:85066328960

VL - 221

JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

SN - 1386-1425

M1 - 117214

ER -