Stress-dependence of dislocation dissociation, nucleation and annihilation in elastically anisotropic Cu

Tengwu He, Yanzhou Ji, Yuming Qi, Long Qing Chen, Miaolin Feng

Research output: Contribution to journalArticlepeer-review

Abstract

Dislocation dynamics under external stresses are an important manifestation of plastic behaviors of materials. In this study, based on the work of Shen et al. (2014), an improved microscopic phase field (MPF) model incorporating gradient energy term into the energy functional is developed to thoroughly investigate the stress dependence of whole dislocation evolution processes, including dislocation dissociation, nucleation, and annihilation in Cu with prominent elastic anisotropy. Necessary physical parameters such as elastic constants, lattice energy and gradient energy coefficients are all determined by atomistic molecular statics (MS) simulations. The residue theorem is utilized to accurately solve the anisotropic stress kernels as pre-factors characterizing the long-range elastic interaction produced by edge and screw components of mixed dislocations in anisotropic Cu. The Peierls stress of screw dislocations and stacking fault width under applied stress are evaluated by the MPF model and compared with those assessed by the semi-discrete variational Peierls-Nabarro (SVPN) model and MS simulations. The MPF model is then applied to screw dislocation dipoles and dislocation loops to examine possible dislocation evolution paths under different stress states. Through systematic simulations, we find the dislocation evolution regimes are closely related with the applied stress, and can be distinguished by three important critical stresses, i.e., critical stress, singular stress, and nucleation stress. Specifically, when the applied stress is less than the critical stress, the dislocation loops always collapse in the end, and do not depend on the final states of Shockley partials, which may exist or have annihilated. Furthermore, when the applied stress exceeds the nucleation stress, partial dislocations will spontaneously nucleate within stacking fault (SF) area, followed by a series of dislocation reactions until partial dislocations bρ1 and bρ3 are left in the end. Besides, the shear stress components perpendicular to the Escaig stress in slip plane are found to suppress the nucleation of partial dislocations in SF area.

Original languageEnglish (US)
Article number102927
JournalInternational journal of plasticity
Volume138
DOIs
StatePublished - Mar 2021

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Stress-dependence of dislocation dissociation, nucleation and annihilation in elastically anisotropic Cu'. Together they form a unique fingerprint.

Cite this