Stress distribution and failure in anisotropic rock near a bend on a weak fault

Judith S. Chester, Raymond C. Fletcher

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Large transform faults, thin-skinned thrust faults, and listric normal faults often contain restraining and releasing bends that can alter the state of stress in the adjacent crust during faulting episodes. Crustal rock commonly has anisotropic mechanical properties due to the presence of sedimentary layering, subsidiary fractures and faults, schistosity, or other foliation. We present an analytical solution for the stress distribution in anisotropic rock produced by sliding on a wavy, frictionless surface. The frictionless surface represents the limiting case of a weak fault. The fault shape treated is either a sinusoid, or a periodic array of isolated restraining and releasing bends. The rheological behavior of the rock is that of an incompressible linear viscous fluid with an orthotropic anisotropy characterized by a greater viscosity for shortening and extension than for shear in the principal directions of anisotropy. Our results illustrate that stress and flow associated with a bend in a fault will extend to much greater distances from the fault when the medium is anisotropic. The magnitude of the stress perturbation increases with degree of anisotropy and decreases with radius of curvature of the fault surface. Principal stress directions tend to align parallel to the principal directions of anisotropy except in the immediate region of the fault bend. Mean stress and maximum shear stress magnitudes vary along the fault in a cellular manner, with multiple maxima near a bend. Stress concentrations emanate from the bend and are elongate in directions parallel to the principal directions of anisotropy. For isotropic rock, locations and orientations of shear failure near restraining bends are distinctly different from those near releasing bends. In contrast, with application of an anisotropic failure criterion, as the magnitude of anisotropy increases, the patterns of shear failure at a restraining and a releasing bend become increasingly similar. The model may help explain field observations from dip-slip and strikeslip regimes that indicate a complex stress history and local stress reorientation adjacent to a bend in a fault.

Original languageEnglish (US)
Pages (from-to)693-708
Number of pages16
JournalJournal of Geophysical Research B: Solid Earth
Volume102
Issue numberB1
StatePublished - Jan 1 1997

Fingerprint

stress distribution
Stress concentration
Rocks
releasing
rocks
Anisotropy
anisotropy
rock
shear
Transform faults
subsidiaries
stress concentration
anisotropic media
sine waves
viscous fluids
Anisotropic media
Faulting
shear stress
retraining
sliding

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

Chester, Judith S. ; Fletcher, Raymond C. / Stress distribution and failure in anisotropic rock near a bend on a weak fault. In: Journal of Geophysical Research B: Solid Earth. 1997 ; Vol. 102, No. B1. pp. 693-708.
@article{e772cf5a163c411f8af4ecb690011fa9,
title = "Stress distribution and failure in anisotropic rock near a bend on a weak fault",
abstract = "Large transform faults, thin-skinned thrust faults, and listric normal faults often contain restraining and releasing bends that can alter the state of stress in the adjacent crust during faulting episodes. Crustal rock commonly has anisotropic mechanical properties due to the presence of sedimentary layering, subsidiary fractures and faults, schistosity, or other foliation. We present an analytical solution for the stress distribution in anisotropic rock produced by sliding on a wavy, frictionless surface. The frictionless surface represents the limiting case of a weak fault. The fault shape treated is either a sinusoid, or a periodic array of isolated restraining and releasing bends. The rheological behavior of the rock is that of an incompressible linear viscous fluid with an orthotropic anisotropy characterized by a greater viscosity for shortening and extension than for shear in the principal directions of anisotropy. Our results illustrate that stress and flow associated with a bend in a fault will extend to much greater distances from the fault when the medium is anisotropic. The magnitude of the stress perturbation increases with degree of anisotropy and decreases with radius of curvature of the fault surface. Principal stress directions tend to align parallel to the principal directions of anisotropy except in the immediate region of the fault bend. Mean stress and maximum shear stress magnitudes vary along the fault in a cellular manner, with multiple maxima near a bend. Stress concentrations emanate from the bend and are elongate in directions parallel to the principal directions of anisotropy. For isotropic rock, locations and orientations of shear failure near restraining bends are distinctly different from those near releasing bends. In contrast, with application of an anisotropic failure criterion, as the magnitude of anisotropy increases, the patterns of shear failure at a restraining and a releasing bend become increasingly similar. The model may help explain field observations from dip-slip and strikeslip regimes that indicate a complex stress history and local stress reorientation adjacent to a bend in a fault.",
author = "Chester, {Judith S.} and Fletcher, {Raymond C.}",
year = "1997",
month = "1",
day = "1",
language = "English (US)",
volume = "102",
pages = "693--708",
journal = "Journal of Geophysical Research",
issn = "0148-0227",
publisher = "American Geophysical Union",
number = "B1",

}

Stress distribution and failure in anisotropic rock near a bend on a weak fault. / Chester, Judith S.; Fletcher, Raymond C.

In: Journal of Geophysical Research B: Solid Earth, Vol. 102, No. B1, 01.01.1997, p. 693-708.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Stress distribution and failure in anisotropic rock near a bend on a weak fault

AU - Chester, Judith S.

AU - Fletcher, Raymond C.

PY - 1997/1/1

Y1 - 1997/1/1

N2 - Large transform faults, thin-skinned thrust faults, and listric normal faults often contain restraining and releasing bends that can alter the state of stress in the adjacent crust during faulting episodes. Crustal rock commonly has anisotropic mechanical properties due to the presence of sedimentary layering, subsidiary fractures and faults, schistosity, or other foliation. We present an analytical solution for the stress distribution in anisotropic rock produced by sliding on a wavy, frictionless surface. The frictionless surface represents the limiting case of a weak fault. The fault shape treated is either a sinusoid, or a periodic array of isolated restraining and releasing bends. The rheological behavior of the rock is that of an incompressible linear viscous fluid with an orthotropic anisotropy characterized by a greater viscosity for shortening and extension than for shear in the principal directions of anisotropy. Our results illustrate that stress and flow associated with a bend in a fault will extend to much greater distances from the fault when the medium is anisotropic. The magnitude of the stress perturbation increases with degree of anisotropy and decreases with radius of curvature of the fault surface. Principal stress directions tend to align parallel to the principal directions of anisotropy except in the immediate region of the fault bend. Mean stress and maximum shear stress magnitudes vary along the fault in a cellular manner, with multiple maxima near a bend. Stress concentrations emanate from the bend and are elongate in directions parallel to the principal directions of anisotropy. For isotropic rock, locations and orientations of shear failure near restraining bends are distinctly different from those near releasing bends. In contrast, with application of an anisotropic failure criterion, as the magnitude of anisotropy increases, the patterns of shear failure at a restraining and a releasing bend become increasingly similar. The model may help explain field observations from dip-slip and strikeslip regimes that indicate a complex stress history and local stress reorientation adjacent to a bend in a fault.

AB - Large transform faults, thin-skinned thrust faults, and listric normal faults often contain restraining and releasing bends that can alter the state of stress in the adjacent crust during faulting episodes. Crustal rock commonly has anisotropic mechanical properties due to the presence of sedimentary layering, subsidiary fractures and faults, schistosity, or other foliation. We present an analytical solution for the stress distribution in anisotropic rock produced by sliding on a wavy, frictionless surface. The frictionless surface represents the limiting case of a weak fault. The fault shape treated is either a sinusoid, or a periodic array of isolated restraining and releasing bends. The rheological behavior of the rock is that of an incompressible linear viscous fluid with an orthotropic anisotropy characterized by a greater viscosity for shortening and extension than for shear in the principal directions of anisotropy. Our results illustrate that stress and flow associated with a bend in a fault will extend to much greater distances from the fault when the medium is anisotropic. The magnitude of the stress perturbation increases with degree of anisotropy and decreases with radius of curvature of the fault surface. Principal stress directions tend to align parallel to the principal directions of anisotropy except in the immediate region of the fault bend. Mean stress and maximum shear stress magnitudes vary along the fault in a cellular manner, with multiple maxima near a bend. Stress concentrations emanate from the bend and are elongate in directions parallel to the principal directions of anisotropy. For isotropic rock, locations and orientations of shear failure near restraining bends are distinctly different from those near releasing bends. In contrast, with application of an anisotropic failure criterion, as the magnitude of anisotropy increases, the patterns of shear failure at a restraining and a releasing bend become increasingly similar. The model may help explain field observations from dip-slip and strikeslip regimes that indicate a complex stress history and local stress reorientation adjacent to a bend in a fault.

UR - http://www.scopus.com/inward/record.url?scp=17544384713&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17544384713&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:17544384713

VL - 102

SP - 693

EP - 708

JO - Journal of Geophysical Research

JF - Journal of Geophysical Research

SN - 0148-0227

IS - B1

ER -