Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

S. Huang, F. Fan, J. Li, S. Zhang, T. Zhu

Research output: Contribution to journalArticle

116 Citations (Scopus)

Abstract

A model is developed to study the stress generation in a spherical particle subjected to lithium insertion. The model accounts for both the plastic deformation and the coexistence of lithium-poor and lithium-rich phases with a sharp and curved phase boundary. Such two-phase and inelastic deformation characteristics often arise during lithiation of crystalline particles with high capacity. A flexible sigmoid function is used to create the lithium profile with a step-like change in lithium concentration, mimicking a sharp phase boundary that separates a pristine core and a lithiated shell in the particle. The mechanics results, obtained by an analytic formulation and finite difference calculations, show the development of tensile hoop stress in the surface layer of the lithiated shell. This hoop tension provides the driving force of surface cracking, as observed by in situ transmission electron microscopy. The two-phase lithiation model is further compared with the single-phase one, which assumes a gradual and smooth variation in radial lithium distributions, and thus predicts only hoop compression in the surface layer of the particle. Furthermore, the effect of dilatational vs. unidirectional lithiation strains in the two-phase model is studied, thereby underscoring the critical role of anisotropy of lithiation strain in controlling stress generation in high-capacity electrodes for lithium ion batteries.

Original languageEnglish (US)
Pages (from-to)4354-4364
Number of pages11
JournalActa Materialia
Volume61
Issue number12
DOIs
StatePublished - Jul 1 2013

Fingerprint

Lithium
Electrodes
Phase boundaries
Tensile stress
Lithium-ion batteries
Plastic deformation
Mechanics
Anisotropy
Crystalline materials
Transmission electron microscopy

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Cite this

Huang, S. ; Fan, F. ; Li, J. ; Zhang, S. ; Zhu, T. / Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. In: Acta Materialia. 2013 ; Vol. 61, No. 12. pp. 4354-4364.
@article{272a0fc47704496681622288d2f6a803,
title = "Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries",
abstract = "A model is developed to study the stress generation in a spherical particle subjected to lithium insertion. The model accounts for both the plastic deformation and the coexistence of lithium-poor and lithium-rich phases with a sharp and curved phase boundary. Such two-phase and inelastic deformation characteristics often arise during lithiation of crystalline particles with high capacity. A flexible sigmoid function is used to create the lithium profile with a step-like change in lithium concentration, mimicking a sharp phase boundary that separates a pristine core and a lithiated shell in the particle. The mechanics results, obtained by an analytic formulation and finite difference calculations, show the development of tensile hoop stress in the surface layer of the lithiated shell. This hoop tension provides the driving force of surface cracking, as observed by in situ transmission electron microscopy. The two-phase lithiation model is further compared with the single-phase one, which assumes a gradual and smooth variation in radial lithium distributions, and thus predicts only hoop compression in the surface layer of the particle. Furthermore, the effect of dilatational vs. unidirectional lithiation strains in the two-phase model is studied, thereby underscoring the critical role of anisotropy of lithiation strain in controlling stress generation in high-capacity electrodes for lithium ion batteries.",
author = "S. Huang and F. Fan and J. Li and S. Zhang and T. Zhu",
year = "2013",
month = "7",
day = "1",
doi = "10.1016/j.actamat.2013.04.007",
language = "English (US)",
volume = "61",
pages = "4354--4364",
journal = "Acta Materialia",
issn = "1359-6454",
publisher = "Elsevier Limited",
number = "12",

}

Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. / Huang, S.; Fan, F.; Li, J.; Zhang, S.; Zhu, T.

In: Acta Materialia, Vol. 61, No. 12, 01.07.2013, p. 4354-4364.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

AU - Huang, S.

AU - Fan, F.

AU - Li, J.

AU - Zhang, S.

AU - Zhu, T.

PY - 2013/7/1

Y1 - 2013/7/1

N2 - A model is developed to study the stress generation in a spherical particle subjected to lithium insertion. The model accounts for both the plastic deformation and the coexistence of lithium-poor and lithium-rich phases with a sharp and curved phase boundary. Such two-phase and inelastic deformation characteristics often arise during lithiation of crystalline particles with high capacity. A flexible sigmoid function is used to create the lithium profile with a step-like change in lithium concentration, mimicking a sharp phase boundary that separates a pristine core and a lithiated shell in the particle. The mechanics results, obtained by an analytic formulation and finite difference calculations, show the development of tensile hoop stress in the surface layer of the lithiated shell. This hoop tension provides the driving force of surface cracking, as observed by in situ transmission electron microscopy. The two-phase lithiation model is further compared with the single-phase one, which assumes a gradual and smooth variation in radial lithium distributions, and thus predicts only hoop compression in the surface layer of the particle. Furthermore, the effect of dilatational vs. unidirectional lithiation strains in the two-phase model is studied, thereby underscoring the critical role of anisotropy of lithiation strain in controlling stress generation in high-capacity electrodes for lithium ion batteries.

AB - A model is developed to study the stress generation in a spherical particle subjected to lithium insertion. The model accounts for both the plastic deformation and the coexistence of lithium-poor and lithium-rich phases with a sharp and curved phase boundary. Such two-phase and inelastic deformation characteristics often arise during lithiation of crystalline particles with high capacity. A flexible sigmoid function is used to create the lithium profile with a step-like change in lithium concentration, mimicking a sharp phase boundary that separates a pristine core and a lithiated shell in the particle. The mechanics results, obtained by an analytic formulation and finite difference calculations, show the development of tensile hoop stress in the surface layer of the lithiated shell. This hoop tension provides the driving force of surface cracking, as observed by in situ transmission electron microscopy. The two-phase lithiation model is further compared with the single-phase one, which assumes a gradual and smooth variation in radial lithium distributions, and thus predicts only hoop compression in the surface layer of the particle. Furthermore, the effect of dilatational vs. unidirectional lithiation strains in the two-phase model is studied, thereby underscoring the critical role of anisotropy of lithiation strain in controlling stress generation in high-capacity electrodes for lithium ion batteries.

UR - http://www.scopus.com/inward/record.url?scp=84878593928&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878593928&partnerID=8YFLogxK

U2 - 10.1016/j.actamat.2013.04.007

DO - 10.1016/j.actamat.2013.04.007

M3 - Article

AN - SCOPUS:84878593928

VL - 61

SP - 4354

EP - 4364

JO - Acta Materialia

JF - Acta Materialia

SN - 1359-6454

IS - 12

ER -