Structure characterization of native cellulose during dehydration and rehydration

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The goal of this study is to investigate the hydration and dehydration induced structural changes of native cellulose. Never dried cotton, and never dried bacterial cellulose with and without added matrix polymer xyloglucan, are examined under the influence of dehydration and rehydration. Significant crystal structure changes were observed in the later stage of drying for both cotton and bacterial cellulose (BC). The 1 % lateral expansion in glucan chain spacing and 17 % decrease of calculated Scherrer dimension were detected for cotton due to the distortion of the structure possibly caused by mechanical stresses associated with drying. No detectable changes on average glucan chain spacings were observed for large BC crystals. However, an average width decrease by 4.4 nm was discovered in the (010) direction, which was more significant than that observed in the (100) and (110) directions. It is hypothesized that co-crystallized elementary fibrils preferentially disassociate along the (010) plane resulting in a significant reduction of crystal width. In the BC-xyloglucan model composite, the presence of xyloglucan does not interfere with the dehydration behavior. Rehydration leads to some structural changes but to a lesser extent than the initial drying. High temperature dehydration induced deformation and crystal size changes are found to be non-reversible due to the removal of the last hydration layer on the cellulose surface.

Original languageEnglish (US)
Pages (from-to)3951-3963
Number of pages13
JournalCellulose
Volume21
Issue number6
DOIs
StatePublished - Nov 6 2014

All Science Journal Classification (ASJC) codes

  • Polymers and Plastics

Fingerprint Dive into the research topics of 'Structure characterization of native cellulose during dehydration and rehydration'. Together they form a unique fingerprint.

Cite this