Abstract
"Two-armed" imidazolium polymers 2a-2f, most of which contain oxyethylene moieties as linkers and ethyleneoxy terminal units, were prepared via ROMP. These polymers were thermally stable, with 5% weight losses occurring at 350 ± 5 °C under nitrogen. Their glass transitions were -22 to -51 °C, mostly ∼3 °C higher than those of the respective monomers. The conductivities of the polymers were 4-30-fold lower than those of the respective monomers. The maximum room temperature (RT) conductivity, σ 25 = 2.27 × 10 -5 S/cm, was observed with the polymer 2f with a tetra(oxyethylene) linker (X = 4) and a terminal di(ethyleneoxy) unit (Y = 2). Reduction of the double bonds in polymers 2 resulted in only small changes in T g of the resultant 3 but 2.4-fold loss in RT conductivities. Four "one-armed" norbornene imidazolium TFSI monomers via ROMP produced polymers 5, whose T g s were generally low (-50 to -65 °C) and very close to those of the monomers. Although the RT conductivities were reduced by about an order of magnitude from the monomers, the polymers with tetra(oxyethylene) linkers (X = 4) and di- and triethyleneoxy terminal units (Y = 2 or 3) (5c and 5d) had σ 25 ∼ 3 × 10 -5 S/cm, similar to the best two-armed polymer. Two ABA triblock copolymers 8 were successfully synthesized from norbornene-N-phenylimide and two-armed monomers with different terminal ethyleneoxy units (1d and 1e); these polymers demonstrated single direction actuation, but their performance was mediocre because of phase mixing that prevented the formation of the required bicontinuous phase morphology.
Original language | English (US) |
---|---|
Pages (from-to) | 1389-1399 |
Number of pages | 11 |
Journal | Macromolecules |
Volume | 52 |
Issue number | 4 |
DOIs | |
State | Published - Feb 26 2019 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Materials Chemistry
Cite this
}
Studies of Ion Conductance in Polymers Derived from Norbornene Imidazolium Salts Containing Ethyleneoxy Moieties. / Price, Terry L.; Choi, U. Hyeok; Schoonover, Daniel V.; Wang, Dong; Heflin, James R.; Xie, Renxuan; Colby, Ralph H.; Gibson, Harry W.
In: Macromolecules, Vol. 52, No. 4, 26.02.2019, p. 1389-1399.Research output: Contribution to journal › Article
TY - JOUR
T1 - Studies of Ion Conductance in Polymers Derived from Norbornene Imidazolium Salts Containing Ethyleneoxy Moieties
AU - Price, Terry L.
AU - Choi, U. Hyeok
AU - Schoonover, Daniel V.
AU - Wang, Dong
AU - Heflin, James R.
AU - Xie, Renxuan
AU - Colby, Ralph H.
AU - Gibson, Harry W.
PY - 2019/2/26
Y1 - 2019/2/26
N2 - "Two-armed" imidazolium polymers 2a-2f, most of which contain oxyethylene moieties as linkers and ethyleneoxy terminal units, were prepared via ROMP. These polymers were thermally stable, with 5% weight losses occurring at 350 ± 5 °C under nitrogen. Their glass transitions were -22 to -51 °C, mostly ∼3 °C higher than those of the respective monomers. The conductivities of the polymers were 4-30-fold lower than those of the respective monomers. The maximum room temperature (RT) conductivity, σ 25 = 2.27 × 10 -5 S/cm, was observed with the polymer 2f with a tetra(oxyethylene) linker (X = 4) and a terminal di(ethyleneoxy) unit (Y = 2). Reduction of the double bonds in polymers 2 resulted in only small changes in T g of the resultant 3 but 2.4-fold loss in RT conductivities. Four "one-armed" norbornene imidazolium TFSI monomers via ROMP produced polymers 5, whose T g s were generally low (-50 to -65 °C) and very close to those of the monomers. Although the RT conductivities were reduced by about an order of magnitude from the monomers, the polymers with tetra(oxyethylene) linkers (X = 4) and di- and triethyleneoxy terminal units (Y = 2 or 3) (5c and 5d) had σ 25 ∼ 3 × 10 -5 S/cm, similar to the best two-armed polymer. Two ABA triblock copolymers 8 were successfully synthesized from norbornene-N-phenylimide and two-armed monomers with different terminal ethyleneoxy units (1d and 1e); these polymers demonstrated single direction actuation, but their performance was mediocre because of phase mixing that prevented the formation of the required bicontinuous phase morphology.
AB - "Two-armed" imidazolium polymers 2a-2f, most of which contain oxyethylene moieties as linkers and ethyleneoxy terminal units, were prepared via ROMP. These polymers were thermally stable, with 5% weight losses occurring at 350 ± 5 °C under nitrogen. Their glass transitions were -22 to -51 °C, mostly ∼3 °C higher than those of the respective monomers. The conductivities of the polymers were 4-30-fold lower than those of the respective monomers. The maximum room temperature (RT) conductivity, σ 25 = 2.27 × 10 -5 S/cm, was observed with the polymer 2f with a tetra(oxyethylene) linker (X = 4) and a terminal di(ethyleneoxy) unit (Y = 2). Reduction of the double bonds in polymers 2 resulted in only small changes in T g of the resultant 3 but 2.4-fold loss in RT conductivities. Four "one-armed" norbornene imidazolium TFSI monomers via ROMP produced polymers 5, whose T g s were generally low (-50 to -65 °C) and very close to those of the monomers. Although the RT conductivities were reduced by about an order of magnitude from the monomers, the polymers with tetra(oxyethylene) linkers (X = 4) and di- and triethyleneoxy terminal units (Y = 2 or 3) (5c and 5d) had σ 25 ∼ 3 × 10 -5 S/cm, similar to the best two-armed polymer. Two ABA triblock copolymers 8 were successfully synthesized from norbornene-N-phenylimide and two-armed monomers with different terminal ethyleneoxy units (1d and 1e); these polymers demonstrated single direction actuation, but their performance was mediocre because of phase mixing that prevented the formation of the required bicontinuous phase morphology.
UR - http://www.scopus.com/inward/record.url?scp=85061966584&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061966584&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.8b02303
DO - 10.1021/acs.macromol.8b02303
M3 - Article
AN - SCOPUS:85061966584
VL - 52
SP - 1389
EP - 1399
JO - Macromolecules
JF - Macromolecules
SN - 0024-9297
IS - 4
ER -