Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems

Research output: Contribution to journalArticle

159 Citations (Scopus)

Abstract

A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 ± 25 and 84 ± 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 ± 27 mW/m2 (Chitin 20) and 76 ± 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 ± 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 ± 12 to 62 ± 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.

Original languageEnglish (US)
Pages (from-to)4053-4058
Number of pages6
JournalEnvironmental Science and Technology
Volume41
Issue number11
DOIs
StatePublished - Jun 1 2007

Fingerprint

Microbial fuel cells
Chitin
chitin
fuel cell
power generation
Power generation
Sediments
substrate
Substrates
sediment
Cellulose
cellulose
Biological materials
Particle size
particle size
organic matter
Biodegradability
Powders
marine sediment
electricity

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry

Cite this

@article{5af23e0bd647466597c660fcaf4d104a,
title = "Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems",
abstract = "A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 ± 25 and 84 ± 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 ± 27 mW/m2 (Chitin 20) and 76 ± 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 ± 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 ± 12 to 62 ± 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.",
author = "Farzaneh Rezaei and Richard, {Thomas Lehman} and Brennan, {Rachel Alice} and Logan, {Bruce Ernest}",
year = "2007",
month = "6",
day = "1",
doi = "10.1021/es070426e",
language = "English (US)",
volume = "41",
pages = "4053--4058",
journal = "Environmental Science & Technology",
issn = "0013-936X",
publisher = "American Chemical Society",
number = "11",

}

TY - JOUR

T1 - Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems

AU - Rezaei, Farzaneh

AU - Richard, Thomas Lehman

AU - Brennan, Rachel Alice

AU - Logan, Bruce Ernest

PY - 2007/6/1

Y1 - 2007/6/1

N2 - A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 ± 25 and 84 ± 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 ± 27 mW/m2 (Chitin 20) and 76 ± 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 ± 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 ± 12 to 62 ± 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.

AB - A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 ± 25 and 84 ± 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 ± 27 mW/m2 (Chitin 20) and 76 ± 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 ± 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 ± 12 to 62 ± 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.

UR - http://www.scopus.com/inward/record.url?scp=34250210753&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34250210753&partnerID=8YFLogxK

U2 - 10.1021/es070426e

DO - 10.1021/es070426e

M3 - Article

VL - 41

SP - 4053

EP - 4058

JO - Environmental Science & Technology

JF - Environmental Science & Technology

SN - 0013-936X

IS - 11

ER -