Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis

Kate M. Adkison, Shun Li Shang, Brandon J. Bocklund, Detlef Klimm, Darrell G. Schlom, Zi-kui Liu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We have conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to evaluate their suitability as source materials for oxide molecular-beam epitaxy (MBE). 16 solid or liquid oxides are identified that evaporate nearly congruently from stable oxide sources to gas species: As2O3, B2O3, BaO, MoO3, OsO4, P2O5, PbO, PuO2, Rb2O, Re2O7, Sb2O3, SeO2, SnO, ThO2, Tl2O, and WO3. An additional 24 oxides could provide molecular beams with dominant gas species of CeO, Cs2O, DyO, ErO, Ga2O, GdO, GeO, HfO, HoO, In2O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te2O2, U2O6, VO2, and YO2. The present findings are in close accord with available experimental results in the literature. For example, As2O3, B2O3, BaO, MoO3, PbO, Sb2O3, and WO3 are the only oxides in the ideal category that have been used in MBE. The remaining oxides deemed ideal for MBE awaiting experimental verification. We also consider two-phase mixtures as a route to achieve the desired congruent evaporation characteristic of an ideal MBE source. These include (Ga2O3 + Ga) to produce a molecular beam of Ga2O(g), (GeO2 + Ge) to produce GeO(g), (SiO2 + Si) to produce SiO(g), (SnO2 + Sn) to produce SnO(g), etc.; these suboxide sources enable suboxide MBE. Our analysis provides the vapor pressures of the gas species over the condensed phases of 128 binary oxides, which may be either solid or liquid depending on the melting temperature.

Original languageEnglish (US)
Article number081110
JournalAPL Materials
Volume8
Issue number8
DOIs
StatePublished - Aug 1 2020

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis'. Together they form a unique fingerprint.

Cite this