### Abstract

It is known that the capacity of parallel (e.g., multicarrier) Gaussian point-to-point, multiple access and broadcast channels (without common messages) can be achieved by separate encoding for each subchannel (carrier) subject to a power allocation across carriers. Recent results have shown that parallel interference channels are not separable, i.e., joint coding is needed to achieve capacity in general. This work studies the separability, from a sum-capacity perspective, of single hop Gaussian interference networks with independent messages and arbitrary number of transmitters and receivers. The main result is that the only network that is always (for all values of channel coefficients) separable from a sum-capacity perspective is the MAC-Z-BC network, i.e., a network where a MAC component and a BC component are linked by a Z component. The sum capacity of this network is explicitly characterized.

Original language | English (US) |
---|---|

Title of host publication | 2010 IEEE International Symposium on Information Theory, ISIT 2010 - Proceedings |

Pages | 2318-2322 |

Number of pages | 5 |

DOIs | |

State | Published - Aug 23 2010 |

Event | 2010 IEEE International Symposium on Information Theory, ISIT 2010 - Austin, TX, United States Duration: Jun 13 2010 → Jun 18 2010 |

### Publication series

Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|

ISSN (Print) | 2157-8103 |

### Other

Other | 2010 IEEE International Symposium on Information Theory, ISIT 2010 |
---|---|

Country | United States |

City | Austin, TX |

Period | 6/13/10 → 6/18/10 |

### All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Information Systems
- Modeling and Simulation
- Applied Mathematics

## Fingerprint Dive into the research topics of 'Sum-capacity and the unique separability of the parallel Gaussian MAC-Z-BC network'. Together they form a unique fingerprint.

## Cite this

*2010 IEEE International Symposium on Information Theory, ISIT 2010 - Proceedings*(pp. 2318-2322). [5513660] (IEEE International Symposium on Information Theory - Proceedings). https://doi.org/10.1109/ISIT.2010.5513660