Sums of cubes in polynomial rings

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

For any associative ring A with 1 of prime characteristic =0, 2, 3, every element of A is the sum of three cubes in A.

Original languageEnglish (US)
Pages (from-to)349-357
Number of pages9
JournalMathematics of Computation
Volume56
Issue number193
DOIs
StatePublished - Jan 1991

Fingerprint

Sum of cubes
Polynomial ring
Regular hexahedron
Polynomials
Ring

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory
  • Computational Mathematics
  • Applied Mathematics

Cite this

@article{f8f996dee6cd41bdb62014b16e788220,
title = "Sums of cubes in polynomial rings",
abstract = "For any associative ring A with 1 of prime characteristic =0, 2, 3, every element of A is the sum of three cubes in A.",
author = "Vaserstein, {L. N.}",
year = "1991",
month = "1",
doi = "10.1090/S0025-5718-1991-1052104-3",
language = "English (US)",
volume = "56",
pages = "349--357",
journal = "Mathematics of Computation",
issn = "0025-5718",
publisher = "American Mathematical Society",
number = "193",

}

Sums of cubes in polynomial rings. / Vaserstein, L. N.

In: Mathematics of Computation, Vol. 56, No. 193, 01.1991, p. 349-357.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Sums of cubes in polynomial rings

AU - Vaserstein, L. N.

PY - 1991/1

Y1 - 1991/1

N2 - For any associative ring A with 1 of prime characteristic =0, 2, 3, every element of A is the sum of three cubes in A.

AB - For any associative ring A with 1 of prime characteristic =0, 2, 3, every element of A is the sum of three cubes in A.

UR - http://www.scopus.com/inward/record.url?scp=84966204141&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966204141&partnerID=8YFLogxK

U2 - 10.1090/S0025-5718-1991-1052104-3

DO - 10.1090/S0025-5718-1991-1052104-3

M3 - Article

AN - SCOPUS:84966204141

VL - 56

SP - 349

EP - 357

JO - Mathematics of Computation

JF - Mathematics of Computation

SN - 0025-5718

IS - 193

ER -