TY - CONF
T1 - Supercharacters, symmetric functions in noncommuting variables, extended abstract
AU - Aguiar, Marcelo
AU - André, Carlos
AU - Benedetti, Carolina
AU - Bergeron, Nantel
AU - Chen, Zhi
AU - Diaconis, Persi
AU - Hendrickson, Anders
AU - Hsiao, Samuel
AU - Isaacs, I. Martin
AU - Jedwab, Andrea
AU - Johnson, Kenneth
AU - Karaali, Gizem
AU - Lauve, Aaron
AU - Le, Tung
AU - Lewis, Stephen
AU - Li, Huilan
AU - Magaard, Kay
AU - Marberg, Eric
AU - Novelli, Jean Christophe
AU - Pang, Amy
AU - Saliola, Franco
AU - Tevlin, Lenny
AU - Thibon, Jean Yves
AU - Thiem, Nathaniel
AU - Venkateswaran, Vidya
AU - Vinroot, C. Ryan
AU - Yan, Ning
AU - Zabrocki, Mike
N1 - Funding Information:
diaconis@math.stanford.edu (P. Diaconis), ahendric@cord.edu (A. Hendrickson), hsiao@bard.edu (S. Hsiao), isaacs@math.wisc.edu (I.M. Isaacs), jedwab@usc.edu (A. Jedwab), kwj1@psu.edu (K. Johnson), gizem.karaali@pomona.edu (G. Karaali), lauve@math.luc.edu (A. Lauve), lttung96@yahoo.com (T. Le), stedalew@u.washington.edu (S. Lewis), huilan.li@gmail.com (H. Li), k.magaard@bham.ac.uk (K. Magaard), emarberg@math.mit.edu (E. Marberg), novelli@univ-mlv.fr (J.-C. Novelli), amypang@stanford.edu (A. Pang), saliola@gmail.com (F. Saliola), ltevlin@nyu.edu (L. Tevlin), jyt@univ-mlv.fr (J.-Y. Thibon), thiemn@colorado.edu (N. Thiem), vidyav@caltech.edu (V. Venkateswaran), vinroot@math.wm.edu (C.R. Vinroot), ning.now@gmail.com (N. Yan), zabrocki@mathstat.yorku.ca (M. Zabrocki). 1 Supported by NSF DMS-1001935. 2 Supported by CRC and Beca Mazda. 3 Supported by CRC and NSERC. 4 Supported by NSF DMS-0804324. 5 Supported by NSF DMS 07-01291. 6 Supported by NSA H98230-10-1-0362. 7 Supported by NSF DMS-0854893. 8 Supported by NSF DMS-0652641. 9 Supported by NDSEG Fellowship. 10 Supported by CRC. 11 Supported by NSF DMS-0854849. 12 Supported by NSERC.
PY - 2011
Y1 - 2011
N2 - We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.
AB - We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.
UR - http://www.scopus.com/inward/record.url?scp=84860472062&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860472062&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:84860472062
SP - 3
EP - 14
T2 - 23rd International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'11
Y2 - 13 June 2011 through 17 June 2011
ER -