Support for a synaptic chain model of neuronal sequence generation

Michael A. Long, Dezhe Z. Jin, Michale S. Fee

Research output: Contribution to journalArticlepeer-review

225 Scopus citations

Abstract

In songbirds, the remarkable temporal precision of song is generated by a sparse sequence of bursts in the premotor nucleus HVC. To distinguish between two possible classes of models of neural sequence generation, we carried out intracellular recordings of HVC neurons in singing zebra finches (Taeniopygia guttata). We found that the subthreshold membrane potential is characterized by a large, rapid depolarization 5-10 ms before burst onset, consistent with a synaptically connected chain of neurons in HVC. We found no evidence for the slow membrane potential modulation predicted by models in which burst timing is controlled by subthreshold dynamics. Furthermore, bursts ride on an underlying depolarization of ∼10-ms duration, probably the result of a regenerative calcium spike within HVC neurons that could facilitate the propagation of activity through a chain network with high temporal precision. Our results provide insight into the fundamental mechanisms by which neural circuits can generate complex sequential behaviours.

Original languageEnglish (US)
Pages (from-to)394-399
Number of pages6
JournalNature
Volume468
Issue number7322
DOIs
StatePublished - Nov 18 2010

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Support for a synaptic chain model of neuronal sequence generation'. Together they form a unique fingerprint.

Cite this