Surface chemical functionality effect upon ice adhesion shear strength

J. G. Smith, C. J. Wohl, R. E. Kreeger, J. Palacios, T. Knuth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Ice adhesion shear strength of coatings has been observed to vary with respect to chemical composition. Several studies have indicated that polar surfaces tend to have greater adherence to ice; however, conditions with respect to ice generation and testing have varied. In this study, the effects of hydrogen bonding characteristics of substituted n-alkyldimethylalkoxysilane coatings deposited on an aluminum substrate upon ice adhesion shear strength were investigated with respect to impact icing. Chemical group substitution was on the opposing end of the linear n-alkyl chain with respect to silicon. Three hydrogen-bonding characteristics were evaluated: 1) non-hydrogen bonding, 2) hydrogen bonding (donor/acceptor), and 3) hydrogen bonding (acceptor). The Adverse Environment Rotor Test Stand facility located at The Pennsylvania State University was used to determine ice adhesion shear strength of the various coating compositions at -8, -12, and -16°C within the FAR Part 25/29 Appendix C icing envelope. To compare the results, an adhesion reduction factor was calculated based on the ice adhesion shear strength data of the coatings with respect to uncoated aluminum. Results of the adhesion reduction factor and ice adhesion shear strength taken together revealed complex interactions with impact icing that were dependent on temperature and coating composition.

Original languageEnglish (US)
Title of host publication8th AIAA Atmospheric and Space Environments Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624104336
StatePublished - Jan 1 2016
Event8th AIAA Atmospheric and Space Environments Conference, 2016 - Washington, United States
Duration: Jun 13 2016Jun 17 2016

Publication series

Name8th AIAA Atmospheric and Space Environments Conference

Other

Other8th AIAA Atmospheric and Space Environments Conference, 2016
CountryUnited States
CityWashington
Period6/13/166/17/16

All Science Journal Classification (ASJC) codes

  • Space and Planetary Science
  • Atmospheric Science

Fingerprint Dive into the research topics of 'Surface chemical functionality effect upon ice adhesion shear strength'. Together they form a unique fingerprint.

Cite this