7 Citations (Scopus)

Abstract

The bioavailability of terminal electron acceptors (TEAs) and other substrates affects the efficiency of subsurface bioremediation. While it is often argued that microorganisms exist under "feast or famine", in the laboratory most organisms are studied under "feast" conditions, whereas they typically encounter "famine" in nature. The work described here aims to understand the survival strategies of the anaerobe Geobacter sulfurreduces under TEA-starvation conditions. Cultures were starved for TEA and at various times sampled to perform global comparative proteomic analysis using iTRAQ to obtain insight into the dynamics of change in proteins/enzymes expression associated with change in nutrient availability/environmental stress. Proteins varying in abundance with a high level of statistical significance (p < 0.05) were identified to understand how cells change from midlog to (i) stationary phase and (ii) conditions of prolonged starvation (survival phase). The most highly represented and significantly up-regulated proteins in the survival phase cells are involved in energy metabolism, cell envelope, and transport and binding functional categories. The majority of the proteins were predicted to be localized in the cell membranes. These results document that changes in the outer and cytoplasmic membranes are needed for survival of Geobacter under starvation conditions. The cell shuts down anabolic processes and becomes poised, through changes in its membrane proteins, to sense nutrients in the environment, to transport nutrients into the cell, and to detect or utilize TEAs that are encountered. Under TEA-limiting conditions, the cells turned from translucent white to red in color, indicating higher heme content. The increase in heme content supported proteomics results showing an increase in the number of cytochromes involved in membrane electron transport during the survival phase. The cell is also highly reduced with minimal change in energy charge (ATP to total adenine nucleotide ratio). Nonetheless, these proteomic and biochemical results indicate that even under TEA starvation cells remain poised for bioremediation.

Original languageEnglish (US)
Pages (from-to)4316-4326
Number of pages11
JournalJournal of Proteome Research
Volume12
Issue number10
DOIs
StatePublished - Oct 4 2013

Fingerprint

Geobacter
Starvation
Proteomics
Electrons
Nutrients
Bioremediation
Environmental Biodegradation
Heme
Food
Proteins
Membranes
Cell Membrane
Adenine Nucleotides
Cell membranes
Cytochromes
Microorganisms
Electron Transport
Membrane Proteins
Energy Metabolism
Biological Availability

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Chemistry(all)

Cite this

@article{b7c355bfb5674b39bc48b82fb30225f9,
title = "Survival during long-term starvation: Global proteomics analysis of Geobacter sulfurreducens under prolonged electron-acceptor limitation",
abstract = "The bioavailability of terminal electron acceptors (TEAs) and other substrates affects the efficiency of subsurface bioremediation. While it is often argued that microorganisms exist under {"}feast or famine{"}, in the laboratory most organisms are studied under {"}feast{"} conditions, whereas they typically encounter {"}famine{"} in nature. The work described here aims to understand the survival strategies of the anaerobe Geobacter sulfurreduces under TEA-starvation conditions. Cultures were starved for TEA and at various times sampled to perform global comparative proteomic analysis using iTRAQ to obtain insight into the dynamics of change in proteins/enzymes expression associated with change in nutrient availability/environmental stress. Proteins varying in abundance with a high level of statistical significance (p < 0.05) were identified to understand how cells change from midlog to (i) stationary phase and (ii) conditions of prolonged starvation (survival phase). The most highly represented and significantly up-regulated proteins in the survival phase cells are involved in energy metabolism, cell envelope, and transport and binding functional categories. The majority of the proteins were predicted to be localized in the cell membranes. These results document that changes in the outer and cytoplasmic membranes are needed for survival of Geobacter under starvation conditions. The cell shuts down anabolic processes and becomes poised, through changes in its membrane proteins, to sense nutrients in the environment, to transport nutrients into the cell, and to detect or utilize TEAs that are encountered. Under TEA-limiting conditions, the cells turned from translucent white to red in color, indicating higher heme content. The increase in heme content supported proteomics results showing an increase in the number of cytochromes involved in membrane electron transport during the survival phase. The cell is also highly reduced with minimal change in energy charge (ATP to total adenine nucleotide ratio). Nonetheless, these proteomic and biochemical results indicate that even under TEA starvation cells remain poised for bioremediation.",
author = "Reema Bansal and Helmus, {Ruth A.} and Bruce Stanley and Junjia Zhu and Liermann, {Laura Jean} and Brantley, {Susan Louise} and Ming Tien",
year = "2013",
month = "10",
day = "4",
doi = "10.1021/pr400266m",
language = "English (US)",
volume = "12",
pages = "4316--4326",
journal = "Journal of Proteome Research",
issn = "1535-3893",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - Survival during long-term starvation

T2 - Global proteomics analysis of Geobacter sulfurreducens under prolonged electron-acceptor limitation

AU - Bansal, Reema

AU - Helmus, Ruth A.

AU - Stanley, Bruce

AU - Zhu, Junjia

AU - Liermann, Laura Jean

AU - Brantley, Susan Louise

AU - Tien, Ming

PY - 2013/10/4

Y1 - 2013/10/4

N2 - The bioavailability of terminal electron acceptors (TEAs) and other substrates affects the efficiency of subsurface bioremediation. While it is often argued that microorganisms exist under "feast or famine", in the laboratory most organisms are studied under "feast" conditions, whereas they typically encounter "famine" in nature. The work described here aims to understand the survival strategies of the anaerobe Geobacter sulfurreduces under TEA-starvation conditions. Cultures were starved for TEA and at various times sampled to perform global comparative proteomic analysis using iTRAQ to obtain insight into the dynamics of change in proteins/enzymes expression associated with change in nutrient availability/environmental stress. Proteins varying in abundance with a high level of statistical significance (p < 0.05) were identified to understand how cells change from midlog to (i) stationary phase and (ii) conditions of prolonged starvation (survival phase). The most highly represented and significantly up-regulated proteins in the survival phase cells are involved in energy metabolism, cell envelope, and transport and binding functional categories. The majority of the proteins were predicted to be localized in the cell membranes. These results document that changes in the outer and cytoplasmic membranes are needed for survival of Geobacter under starvation conditions. The cell shuts down anabolic processes and becomes poised, through changes in its membrane proteins, to sense nutrients in the environment, to transport nutrients into the cell, and to detect or utilize TEAs that are encountered. Under TEA-limiting conditions, the cells turned from translucent white to red in color, indicating higher heme content. The increase in heme content supported proteomics results showing an increase in the number of cytochromes involved in membrane electron transport during the survival phase. The cell is also highly reduced with minimal change in energy charge (ATP to total adenine nucleotide ratio). Nonetheless, these proteomic and biochemical results indicate that even under TEA starvation cells remain poised for bioremediation.

AB - The bioavailability of terminal electron acceptors (TEAs) and other substrates affects the efficiency of subsurface bioremediation. While it is often argued that microorganisms exist under "feast or famine", in the laboratory most organisms are studied under "feast" conditions, whereas they typically encounter "famine" in nature. The work described here aims to understand the survival strategies of the anaerobe Geobacter sulfurreduces under TEA-starvation conditions. Cultures were starved for TEA and at various times sampled to perform global comparative proteomic analysis using iTRAQ to obtain insight into the dynamics of change in proteins/enzymes expression associated with change in nutrient availability/environmental stress. Proteins varying in abundance with a high level of statistical significance (p < 0.05) were identified to understand how cells change from midlog to (i) stationary phase and (ii) conditions of prolonged starvation (survival phase). The most highly represented and significantly up-regulated proteins in the survival phase cells are involved in energy metabolism, cell envelope, and transport and binding functional categories. The majority of the proteins were predicted to be localized in the cell membranes. These results document that changes in the outer and cytoplasmic membranes are needed for survival of Geobacter under starvation conditions. The cell shuts down anabolic processes and becomes poised, through changes in its membrane proteins, to sense nutrients in the environment, to transport nutrients into the cell, and to detect or utilize TEAs that are encountered. Under TEA-limiting conditions, the cells turned from translucent white to red in color, indicating higher heme content. The increase in heme content supported proteomics results showing an increase in the number of cytochromes involved in membrane electron transport during the survival phase. The cell is also highly reduced with minimal change in energy charge (ATP to total adenine nucleotide ratio). Nonetheless, these proteomic and biochemical results indicate that even under TEA starvation cells remain poised for bioremediation.

UR - http://www.scopus.com/inward/record.url?scp=84885204893&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84885204893&partnerID=8YFLogxK

U2 - 10.1021/pr400266m

DO - 10.1021/pr400266m

M3 - Article

C2 - 23980722

AN - SCOPUS:84885204893

VL - 12

SP - 4316

EP - 4326

JO - Journal of Proteome Research

JF - Journal of Proteome Research

SN - 1535-3893

IS - 10

ER -