Sympathetic nerve activity during prolonged rhythmic forearm exercise

B. A. Batman, J. C. Hardy, U. A. Leuenberger, M. B. Smith, Q. X. Yang, L. I. Sinoway

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Exercise is a potent stimulus to activate the sympathetic nervous system. Previous work suggests that metabolite-sensitive muscle afferents are activated near the point of fatigue, and, when activated, they determine the muscle sympathetic nerve activity (MSNA) response to isometric forearm exercise. Yet, studies using a more prolonged rhythmic exercise paradigm suggest that the sympathetic nervous system can be activated in a more graded fashion. The purpose of this study was to determine whether metaboreceptor stimulation would also be responsible for MSNA responses to prolonged rhythmic isotonic forearm exercise. Subjects (n = 16) performed rhythmic isotonic forearm exercise at 25% maximal voluntary contraction for 30 min as we measured MSNA (microneurography). We observed progressive increases in MSNA with a peak increase of 161 units from a baseline value of 180 units. We also performed posthandgrip circulatory arrest (PHG-CA) in nine of these subjects. This maneuver isolates the metaboreceptor contribution to MSNA. During PHG-CA, ΔMSNA values were not different from those observed during a freely perfused recovery period (n = 7). We also compared MSNA responses during the rhythmic paradigm with those seen during a static protocol at 40% of maximal voluntary contraction in five subjects. The two types of exercise caused similar increases in MSNA, but only the static paradigm was associated with a sustained MSNA response during PHG-CA. Finally, 31P-nuclear magnetic resonance was used to evaluate muscle metabolic responses during rhythmic and static forearm exercise (n = 6). Static exercise caused muscle acidosis and an increase in H2PO4/-, whereas rhythmic exercise had no effect on muscle metabolism. We conclude that sympathoexcitation during rhythmic exercise is not dependent on engagement of muscle metabolite-sensitive afferents.

Original languageEnglish (US)
Pages (from-to)1077-1081
Number of pages5
JournalJournal of applied physiology
Volume76
Issue number3
DOIs
StatePublished - 1994

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Sympathetic nerve activity during prolonged rhythmic forearm exercise'. Together they form a unique fingerprint.

Cite this