Abstract
Despite the commercial importance of maleic anhydride grafted polypropylene (PP-g-MAH), it has long been a scientific challenge to prepare this polymer with a well-controlled molecular structure. This paper discusses a new chemical route that can form PP-g-MAH with desirable MAH content, a single MAH incorporated unit, white color, high molecular weight, and narrow molecular weight and composition distributions. The chemistry involves a unique PP-co-p-BT copolymer as the "reactive intermediate" that can be effectively prepared by metallocene-mediated copolymerization of propylene and p-(3-butenyl)toluene (p-BT), with narrow molecular weight and composition distributions, high molecular weight, and a broad range of p-BT contents. The incorporated p-BT comonomer units provide the reactive sites for the subsequent free radical MAH graft reaction under a suspension condition at a low reaction temperature. The resulting PP-g-MAH polymers were carefully examined by a combination of NMR and GPC measurements, which shows almost no change in polymer molecular weight and distribution and a single MAH incorporation (no oligomerization). The incorporated MAH units increase with the increase of initiator concentration, p-BT content, and reaction time. Evidently, the combination of high reactivity of φ-CH3 moiety, a favorable mixing condition between the reactive sites and chemical reagents in the swollen amorphous phases, and low reaction temperature results in MAH grafting reaction selectively taking place at the φ-CH3 moieties without side reactions (i.e., chain degradation and MAH oligomerization). In addition, this suspension reaction process presents an economic method to prepare PP-g-MAH with high polymer content and easy product purification.
Original language | English (US) |
---|---|
Pages (from-to) | 4313-4323 |
Number of pages | 11 |
Journal | Macromolecules |
Volume | 46 |
Issue number | 11 |
DOIs | |
State | Published - Jun 11 2013 |
All Science Journal Classification (ASJC) codes
- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Materials Chemistry