Synthesis and properties of barium titanate thin films on copper substrates

Jon F. Ihlefeld, William Borland, Jon Paul Maria

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Barium titanate thin films have been deposited on copper foils in the absence of interfacial layers via a chemical solution process. The dielectric - base metal stacks have been processed in reductive atmospheres such that substrate oxidation is avoided while allowing the perovskite film phase to crystallize. This accomplishment has facilitated the pursuit of a new embedded capacitor technology offering compatibility with polymer printed wiring boards and capacitance densities in excess of 2.5 μF/cm2. This represents a distinct improvement beyond conventional foil-based capacitor strategies. Finally, two critical phenomena will be discussed: (1) the effect of grain size on the dielectric properties of barium titanate thin films and (2) the effect of the B-site substituent Zr on the lattice, microstructure, and dielectric properties. Most importantly, high processing temperatures have allowed for microstructural and dielectric properties similar to well-prepared bulk ceramics, including average grain diameters greater than 0.1 μm, relative permittivities in excess of 2000, and coercive fields below 10 kV/cm. These properties will be discussed in the context of bulk ceramic and thin film reference data and with regard to integration into printed wiring boards.

Original languageEnglish (US)
Title of host publicationFerroelectric Thin Films XIII
Pages7-14
Number of pages8
StatePublished - Dec 1 2005
Event2005 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 28 2005Dec 2 2005

Publication series

NameMaterials Research Society Symposium Proceedings
Volume902
ISSN (Print)0272-9172

Other

Other2005 MRS Fall Meeting
CountryUnited States
CityBoston, MA
Period11/28/0512/2/05

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Synthesis and properties of barium titanate thin films on copper substrates'. Together they form a unique fingerprint.

Cite this