Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization

Zhifei Chen, Shaoting Cheng, Zibiao Li, Kaitian Xu, Guo Qiang Chen

Research output: Contribution to journalArticle

35 Scopus citations

Abstract

Novel tailor-made poly(ester urethane)s (PUs) based on microbial polyesters poly(3-hydroxybutyrate-co-4hydroxybutyrate) (P3HB4HB) and poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) were synthesized by melting polymerization (MP) using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent. A comprehensive characterization using 1H-NMR, Fourier transform infrared spectroscopy (FT-IR), gel-permeation chromatography (GPC), differential scanning calorimetry (DSC), mechanical properties, static water contact angles, cell proliferation using smooth muscle cells from rabbit aorta (RaSMCs) and immortalized human keratinocytes (HaCat), and blood coagulation behavior were conducted on the synthesized PUs films. DSC showed that PU samples had a low degree of crystallinity at room temperature and became fully amorphous after a melt-quenched process. The series of tailor-made PUs based on different mass ratios of P3HB4HB and PHBHHx revealed a ductile and flexile mechanical property especially for PHBHHx-rich PU, or a hydrophobic property for 4HB-rich PU. A 4 days incubation experiment showed that all PU films had a better cell proliferation than poly(lactic acid) (PLA), polyhydroxybutyrate (PHB), P3HB4HB and PHBHHx. RaSMCs cultured on PU films had a quiescent contractile phenotype, indicating that they were fully functional. HaCat incubated on tailor-made PU films showed a proliferation approximately equal to tissue-culture plates (TCPs). Blood coagulation behavior tests revealed a strong platelet adhesion and a short coagulation time on PU films. This study demonstrated potential medical applications for P3HB4HB and PHBHHx based polyurethane as a hydrophobic wound-healing and hemostatic materials.

Original languageEnglish (US)
Pages (from-to)1451-1471
Number of pages21
JournalJournal of Biomaterials Science, Polymer Edition
Volume20
Issue number10
DOIs
StatePublished - Oct 1 2009

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization'. Together they form a unique fingerprint.

  • Cite this