Systemic and regional hemodynamic response to activation of the exercise pressor reflex in patients with peripheral artery disease

Danielle Jin Kwang Kim, Marcos Kuroki, Jian Cui, Zhaohui Gao, J. Carter Luck, Sam Pai, Amanda Miller, Lawrence Sinoway

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Patients with peripheral artery disease (PAD) have an accentuated exercise pressor reflex (EPR) during exercise of the affected limb. The underlying hemodynamic changes responsible for this, and its effect on blood flow to the exercising extremity, are unclear. We tested the hypothesis that the exaggerated EPR in PAD is mediated by an increase in total peripheral resistance (TPR), which augments redistribution of blood flow to the exercising limb. Twelve patients with PAD and 12 age- and sex-matched subjects without PAD performed dynamic plantar flexion (PF) using the most symptomatic leg at progressive workloads of 2-12 kg (increased by 1 kg/min until onset of fatigue). We measured heart rate, beat-by-beat blood pressure, femoral blood flow velocity (FBV), and muscle oxygen saturation (formula presented ) continuously during the exercise. Femoral blood flow (FBF) was calculated from FBV and baseline femoral artery diameter. Stroke volume (SV), cardiac output (CO), and TPR were derived from the blood pressure tracings. Mean arterial blood pressure and TPR were significantly augmented in PAD compared with control during PF. FBF increased during exercise to an equal extent in both groups. However, formula presented of the exercising limb remained significantly lower in PAD compared with control. We conclude that the exaggerated pressor response in PAD is mediated by an abnormal TPR response, which augments redistribution of blood flow to the exercising extremity, leading to an equal rise in FBF compared with controls. However, this increase in FBF is not sufficient to normalize the SmO2 response during exercise in patients with PAD.NEW & NOTEWORTHY In this study, peripheral artery disease (PAD) patients and healthy control subjects performed graded, dynamic plantar flexion exercise. Data from this study suggest that previously reported exaggerated exercise pressor reflex in patients with PAD is driven by greater vasoconstriction in nonexercising vascular territories which also results in a redistribution of blood flow to the exercising extremity. However, this rise in femoral blood flow does not fully correct the oxygen deficit due to changes in other mechanisms that require further investigation.

Original languageEnglish (US)
Pages (from-to)H916-H924
JournalAmerican journal of physiology. Heart and circulatory physiology
Volume318
Issue number4
DOIs
StatePublished - Apr 1 2020

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Systemic and regional hemodynamic response to activation of the exercise pressor reflex in patients with peripheral artery disease'. Together they form a unique fingerprint.

Cite this