Technical Note: Proof of concept for radiomics-based quality assurance for computed tomography

Luciano R.F. Branco, Rachel B. Ger, Dennis S. Mackin, Shouhao Zhou, Laurence E. Court, Rick R. Layman

Research output: Contribution to journalArticle

Abstract

Purpose: Routine quality assurance (QA) testing to identify malfunctions in medical imaging devices is a standard practice and plays an important role in meeting quality standards. However, current daily computed tomography (CT) QA techniques have proven to be inadequate for the detection of subtle artifacts on scans. Therefore, we investigated the ability of a radiomics phantom to detect subtle artifacts not detected in conventional daily QA. Methods: An updated credence cartridge radiomics phantom was used in this study, with a focus on two of the cartridges (rubber and cork) in the phantom. The phantom was scanned using a Siemens Definition Flash CT scanner, which was reported to produce a subtle line pattern artifact. Images were then imported into the IBEX software program, and 49 features were extracted from the two cartridges using four different preprocessing techniques. Each feature was then compared with features for the same scanner several months previously and with features from controlled CT scans obtained using 100 scanners. Results: Of 196 total features for the test scanner, 79 (40%) from the rubber cartridge and 70 (36%) from the cork cartridge were three or more standard deviations away from the mean of the controlled scan population data. Feature values for the artifact-producing scanner were closer to the population mean when features were preprocessed with Butterworth smoothing. The feature most sensitive to the artifact was co-occurrence matrix maximum probability. The deviation from the mean for this feature was more than seven times greater when the scanner was malfunctioning (7.56 versus 1.01). Conclusions: Radiomics features extracted from a texture phantom were able to identify an artifact-producing scanner as an outlier among 100 CT scanners. This preliminary analysis demonstrated the potential of radiomics in CT QA to identify subtle artifacts not detected using the currently employed daily QA techniques.

Original languageEnglish (US)
Pages (from-to)199-205
Number of pages7
JournalJournal of applied clinical medical physics
Volume20
Issue number11
DOIs
StatePublished - Nov 1 2019

Fingerprint

assurance
Quality assurance
Artifacts
scanners
Tomography
cartridges
tomography
artifacts
X-Ray Computed Tomography Scanners
Rubber
rubber
Medical imaging
malfunctions
Textures
Diagnostic Imaging
Population
preprocessing
smoothing
Software
flash

All Science Journal Classification (ASJC) codes

  • Radiation
  • Instrumentation
  • Radiology Nuclear Medicine and imaging

Cite this

Branco, Luciano R.F. ; Ger, Rachel B. ; Mackin, Dennis S. ; Zhou, Shouhao ; Court, Laurence E. ; Layman, Rick R. / Technical Note : Proof of concept for radiomics-based quality assurance for computed tomography. In: Journal of applied clinical medical physics. 2019 ; Vol. 20, No. 11. pp. 199-205.
@article{3b8c0ddf7fef4e00a0b17e244badd8c4,
title = "Technical Note: Proof of concept for radiomics-based quality assurance for computed tomography",
abstract = "Purpose: Routine quality assurance (QA) testing to identify malfunctions in medical imaging devices is a standard practice and plays an important role in meeting quality standards. However, current daily computed tomography (CT) QA techniques have proven to be inadequate for the detection of subtle artifacts on scans. Therefore, we investigated the ability of a radiomics phantom to detect subtle artifacts not detected in conventional daily QA. Methods: An updated credence cartridge radiomics phantom was used in this study, with a focus on two of the cartridges (rubber and cork) in the phantom. The phantom was scanned using a Siemens Definition Flash CT scanner, which was reported to produce a subtle line pattern artifact. Images were then imported into the IBEX software program, and 49 features were extracted from the two cartridges using four different preprocessing techniques. Each feature was then compared with features for the same scanner several months previously and with features from controlled CT scans obtained using 100 scanners. Results: Of 196 total features for the test scanner, 79 (40{\%}) from the rubber cartridge and 70 (36{\%}) from the cork cartridge were three or more standard deviations away from the mean of the controlled scan population data. Feature values for the artifact-producing scanner were closer to the population mean when features were preprocessed with Butterworth smoothing. The feature most sensitive to the artifact was co-occurrence matrix maximum probability. The deviation from the mean for this feature was more than seven times greater when the scanner was malfunctioning (7.56 versus 1.01). Conclusions: Radiomics features extracted from a texture phantom were able to identify an artifact-producing scanner as an outlier among 100 CT scanners. This preliminary analysis demonstrated the potential of radiomics in CT QA to identify subtle artifacts not detected using the currently employed daily QA techniques.",
author = "Branco, {Luciano R.F.} and Ger, {Rachel B.} and Mackin, {Dennis S.} and Shouhao Zhou and Court, {Laurence E.} and Layman, {Rick R.}",
year = "2019",
month = "11",
day = "1",
doi = "10.1002/acm2.12750",
language = "English (US)",
volume = "20",
pages = "199--205",
journal = "Journal of Applied Clinical Medical Physics",
issn = "1526-9914",
publisher = "American Institute of Physics Publising LLC",
number = "11",

}

Technical Note : Proof of concept for radiomics-based quality assurance for computed tomography. / Branco, Luciano R.F.; Ger, Rachel B.; Mackin, Dennis S.; Zhou, Shouhao; Court, Laurence E.; Layman, Rick R.

In: Journal of applied clinical medical physics, Vol. 20, No. 11, 01.11.2019, p. 199-205.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Technical Note

T2 - Proof of concept for radiomics-based quality assurance for computed tomography

AU - Branco, Luciano R.F.

AU - Ger, Rachel B.

AU - Mackin, Dennis S.

AU - Zhou, Shouhao

AU - Court, Laurence E.

AU - Layman, Rick R.

PY - 2019/11/1

Y1 - 2019/11/1

N2 - Purpose: Routine quality assurance (QA) testing to identify malfunctions in medical imaging devices is a standard practice and plays an important role in meeting quality standards. However, current daily computed tomography (CT) QA techniques have proven to be inadequate for the detection of subtle artifacts on scans. Therefore, we investigated the ability of a radiomics phantom to detect subtle artifacts not detected in conventional daily QA. Methods: An updated credence cartridge radiomics phantom was used in this study, with a focus on two of the cartridges (rubber and cork) in the phantom. The phantom was scanned using a Siemens Definition Flash CT scanner, which was reported to produce a subtle line pattern artifact. Images were then imported into the IBEX software program, and 49 features were extracted from the two cartridges using four different preprocessing techniques. Each feature was then compared with features for the same scanner several months previously and with features from controlled CT scans obtained using 100 scanners. Results: Of 196 total features for the test scanner, 79 (40%) from the rubber cartridge and 70 (36%) from the cork cartridge were three or more standard deviations away from the mean of the controlled scan population data. Feature values for the artifact-producing scanner were closer to the population mean when features were preprocessed with Butterworth smoothing. The feature most sensitive to the artifact was co-occurrence matrix maximum probability. The deviation from the mean for this feature was more than seven times greater when the scanner was malfunctioning (7.56 versus 1.01). Conclusions: Radiomics features extracted from a texture phantom were able to identify an artifact-producing scanner as an outlier among 100 CT scanners. This preliminary analysis demonstrated the potential of radiomics in CT QA to identify subtle artifacts not detected using the currently employed daily QA techniques.

AB - Purpose: Routine quality assurance (QA) testing to identify malfunctions in medical imaging devices is a standard practice and plays an important role in meeting quality standards. However, current daily computed tomography (CT) QA techniques have proven to be inadequate for the detection of subtle artifacts on scans. Therefore, we investigated the ability of a radiomics phantom to detect subtle artifacts not detected in conventional daily QA. Methods: An updated credence cartridge radiomics phantom was used in this study, with a focus on two of the cartridges (rubber and cork) in the phantom. The phantom was scanned using a Siemens Definition Flash CT scanner, which was reported to produce a subtle line pattern artifact. Images were then imported into the IBEX software program, and 49 features were extracted from the two cartridges using four different preprocessing techniques. Each feature was then compared with features for the same scanner several months previously and with features from controlled CT scans obtained using 100 scanners. Results: Of 196 total features for the test scanner, 79 (40%) from the rubber cartridge and 70 (36%) from the cork cartridge were three or more standard deviations away from the mean of the controlled scan population data. Feature values for the artifact-producing scanner were closer to the population mean when features were preprocessed with Butterworth smoothing. The feature most sensitive to the artifact was co-occurrence matrix maximum probability. The deviation from the mean for this feature was more than seven times greater when the scanner was malfunctioning (7.56 versus 1.01). Conclusions: Radiomics features extracted from a texture phantom were able to identify an artifact-producing scanner as an outlier among 100 CT scanners. This preliminary analysis demonstrated the potential of radiomics in CT QA to identify subtle artifacts not detected using the currently employed daily QA techniques.

UR - http://www.scopus.com/inward/record.url?scp=85074432423&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074432423&partnerID=8YFLogxK

U2 - 10.1002/acm2.12750

DO - 10.1002/acm2.12750

M3 - Article

C2 - 31609076

AN - SCOPUS:85074432423

VL - 20

SP - 199

EP - 205

JO - Journal of Applied Clinical Medical Physics

JF - Journal of Applied Clinical Medical Physics

SN - 1526-9914

IS - 11

ER -