TY - GEN
T1 - Technician-free system for image-guided bronchoscopy
AU - Khare, Rahul
AU - Bascom, Rebecca
AU - Higgins, William E.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - Previous studies have shown that guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. However, most of these systems suffer from one or more of the following limitations: 1) an attending technician must carefully keep the system position synchronized with the bronchoscope position during the procedure; 2) extra bronchoscope tracking hardware may be required; 3) guidance cannot take place in real time; 4) the guidance system is unable to detect and correct faulty bronchoscope maneuvers; and 5) a resynchronization procedure must be followed after adverse events such as patient cough or dynamic airway collapse. Here, we propose an image-based system for technician-free bronchoscopy guidance that relies on two features. First, our system precomputes a guidance plan that suggests natural bronchoscope maneuvers at every bifurcation leading toward a region of interest (ROI). Second, our system enables bronchoscope position verification that relies on a global-registration algorithm to establish the global bronchoscope position and, thus, provide the physician with updated navigational information during bronchoscopy. The system can handle general navigation to an ROI, as well as adverse events, and is directly controlled by the physician by a foot pedal. Guided bronchoscopy results using airway-tree phantoms and human cases demonstrate the efficacy of the system.
AB - Previous studies have shown that guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. However, most of these systems suffer from one or more of the following limitations: 1) an attending technician must carefully keep the system position synchronized with the bronchoscope position during the procedure; 2) extra bronchoscope tracking hardware may be required; 3) guidance cannot take place in real time; 4) the guidance system is unable to detect and correct faulty bronchoscope maneuvers; and 5) a resynchronization procedure must be followed after adverse events such as patient cough or dynamic airway collapse. Here, we propose an image-based system for technician-free bronchoscopy guidance that relies on two features. First, our system precomputes a guidance plan that suggests natural bronchoscope maneuvers at every bifurcation leading toward a region of interest (ROI). Second, our system enables bronchoscope position verification that relies on a global-registration algorithm to establish the global bronchoscope position and, thus, provide the physician with updated navigational information during bronchoscopy. The system can handle general navigation to an ROI, as well as adverse events, and is directly controlled by the physician by a foot pedal. Guided bronchoscopy results using airway-tree phantoms and human cases demonstrate the efficacy of the system.
UR - http://www.scopus.com/inward/record.url?scp=84878526654&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878526654&partnerID=8YFLogxK
U2 - 10.1117/12.2004880
DO - 10.1117/12.2004880
M3 - Conference contribution
AN - SCOPUS:84878526654
SN - 9780819494450
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Medical Imaging 2013
T2 - Medical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling
Y2 - 12 February 2013 through 14 February 2013
ER -