Temporal evolution of neuronal changes in cerebral hypoxia- ischemia in developing rats: A quantitative light microscopic study

Javad Towfighi, David Mauger

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

Studies in adult animal models of transient cerebral hypoxia-ischemia (HI) and ischemia suggest that morphologic evidence of neuronal death in some regions such as striatum appears early, while in other regions such as cerebral cortex and CA1 region of hippocampus it is delayed for few days and is referred to as delayed neuronal death (DND). Moreover, in some regions such as CA2/CA3 early 'reactive' neuronal changes occur that are potentially reversible. The aim of this study was to determine whether such changes may also occur in the developing brain. To that end, unilateral cerebral HI was produced in postnatal rats of 13, 21, and 30 days (p13, p21, p30) by right common carotid artery ligation and hypoxemia (breathing 8% O2), and their brains were examined at 24 h, 36 h, 72 h, and 96 h of recovery. The results suggest that: (i) DND is present in developing brain, but its regional distribution varies with animals' age. In cerebral cortex, it is more pronounced in p30 rats than in younger animals. In hippocampus, comparison of lesions of similar severity at different age groups shows a more pronounced DND in CA2/CA3 region of p13 rats than in older animals, but no significant differences exist in the degree of DND in CA1 neurons among different age groups. (ii) 'Reactive' neuronal changes characterized by reduction in Niss1 staining and acidophilia of neuronal perikaryon with minimal nuclear abnormality are present at 24 h of recovery. These changes in some regions, such as in CA1 and cortex, progress to neuronal death, while in other regions such as in CA2/CA3 are potentially reversible. (iii) Recovery of reactive neurons in CA2/CA3 region is age dependent in that there is significant recovery in the older age groups, but not in p13 rats. The pathogenetic mechanisms of the reactive neuronal changes, the chain of events leading to DND or neuronal recovery, and the influence of age in these processes remain to be elucidated.

Original languageEnglish (US)
Pages (from-to)169-177
Number of pages9
JournalDevelopmental Brain Research
Volume109
Issue number2
DOIs
StatePublished - Aug 8 1998

Fingerprint

Brain Hypoxia-Ischemia
Light
Age Groups
Cerebral Cortex
Hippocampus
Brain
Neurons
Common Carotid Artery
Transient Ischemic Attack
Ligation
Respiration
Ischemia
Animal Models
Staining and Labeling

All Science Journal Classification (ASJC) codes

  • Developmental Neuroscience
  • Developmental Biology

Cite this

@article{aa2136e4464d400193eafd50768e961a,
title = "Temporal evolution of neuronal changes in cerebral hypoxia- ischemia in developing rats: A quantitative light microscopic study",
abstract = "Studies in adult animal models of transient cerebral hypoxia-ischemia (HI) and ischemia suggest that morphologic evidence of neuronal death in some regions such as striatum appears early, while in other regions such as cerebral cortex and CA1 region of hippocampus it is delayed for few days and is referred to as delayed neuronal death (DND). Moreover, in some regions such as CA2/CA3 early 'reactive' neuronal changes occur that are potentially reversible. The aim of this study was to determine whether such changes may also occur in the developing brain. To that end, unilateral cerebral HI was produced in postnatal rats of 13, 21, and 30 days (p13, p21, p30) by right common carotid artery ligation and hypoxemia (breathing 8{\%} O2), and their brains were examined at 24 h, 36 h, 72 h, and 96 h of recovery. The results suggest that: (i) DND is present in developing brain, but its regional distribution varies with animals' age. In cerebral cortex, it is more pronounced in p30 rats than in younger animals. In hippocampus, comparison of lesions of similar severity at different age groups shows a more pronounced DND in CA2/CA3 region of p13 rats than in older animals, but no significant differences exist in the degree of DND in CA1 neurons among different age groups. (ii) 'Reactive' neuronal changes characterized by reduction in Niss1 staining and acidophilia of neuronal perikaryon with minimal nuclear abnormality are present at 24 h of recovery. These changes in some regions, such as in CA1 and cortex, progress to neuronal death, while in other regions such as in CA2/CA3 are potentially reversible. (iii) Recovery of reactive neurons in CA2/CA3 region is age dependent in that there is significant recovery in the older age groups, but not in p13 rats. The pathogenetic mechanisms of the reactive neuronal changes, the chain of events leading to DND or neuronal recovery, and the influence of age in these processes remain to be elucidated.",
author = "Javad Towfighi and David Mauger",
year = "1998",
month = "8",
day = "8",
doi = "10.1016/S0165-3806(98)00077-7",
language = "English (US)",
volume = "109",
pages = "169--177",
journal = "Developmental Brain Research",
issn = "0165-3806",
publisher = "Elsevier BV",
number = "2",

}

Temporal evolution of neuronal changes in cerebral hypoxia- ischemia in developing rats : A quantitative light microscopic study. / Towfighi, Javad; Mauger, David.

In: Developmental Brain Research, Vol. 109, No. 2, 08.08.1998, p. 169-177.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Temporal evolution of neuronal changes in cerebral hypoxia- ischemia in developing rats

T2 - A quantitative light microscopic study

AU - Towfighi, Javad

AU - Mauger, David

PY - 1998/8/8

Y1 - 1998/8/8

N2 - Studies in adult animal models of transient cerebral hypoxia-ischemia (HI) and ischemia suggest that morphologic evidence of neuronal death in some regions such as striatum appears early, while in other regions such as cerebral cortex and CA1 region of hippocampus it is delayed for few days and is referred to as delayed neuronal death (DND). Moreover, in some regions such as CA2/CA3 early 'reactive' neuronal changes occur that are potentially reversible. The aim of this study was to determine whether such changes may also occur in the developing brain. To that end, unilateral cerebral HI was produced in postnatal rats of 13, 21, and 30 days (p13, p21, p30) by right common carotid artery ligation and hypoxemia (breathing 8% O2), and their brains were examined at 24 h, 36 h, 72 h, and 96 h of recovery. The results suggest that: (i) DND is present in developing brain, but its regional distribution varies with animals' age. In cerebral cortex, it is more pronounced in p30 rats than in younger animals. In hippocampus, comparison of lesions of similar severity at different age groups shows a more pronounced DND in CA2/CA3 region of p13 rats than in older animals, but no significant differences exist in the degree of DND in CA1 neurons among different age groups. (ii) 'Reactive' neuronal changes characterized by reduction in Niss1 staining and acidophilia of neuronal perikaryon with minimal nuclear abnormality are present at 24 h of recovery. These changes in some regions, such as in CA1 and cortex, progress to neuronal death, while in other regions such as in CA2/CA3 are potentially reversible. (iii) Recovery of reactive neurons in CA2/CA3 region is age dependent in that there is significant recovery in the older age groups, but not in p13 rats. The pathogenetic mechanisms of the reactive neuronal changes, the chain of events leading to DND or neuronal recovery, and the influence of age in these processes remain to be elucidated.

AB - Studies in adult animal models of transient cerebral hypoxia-ischemia (HI) and ischemia suggest that morphologic evidence of neuronal death in some regions such as striatum appears early, while in other regions such as cerebral cortex and CA1 region of hippocampus it is delayed for few days and is referred to as delayed neuronal death (DND). Moreover, in some regions such as CA2/CA3 early 'reactive' neuronal changes occur that are potentially reversible. The aim of this study was to determine whether such changes may also occur in the developing brain. To that end, unilateral cerebral HI was produced in postnatal rats of 13, 21, and 30 days (p13, p21, p30) by right common carotid artery ligation and hypoxemia (breathing 8% O2), and their brains were examined at 24 h, 36 h, 72 h, and 96 h of recovery. The results suggest that: (i) DND is present in developing brain, but its regional distribution varies with animals' age. In cerebral cortex, it is more pronounced in p30 rats than in younger animals. In hippocampus, comparison of lesions of similar severity at different age groups shows a more pronounced DND in CA2/CA3 region of p13 rats than in older animals, but no significant differences exist in the degree of DND in CA1 neurons among different age groups. (ii) 'Reactive' neuronal changes characterized by reduction in Niss1 staining and acidophilia of neuronal perikaryon with minimal nuclear abnormality are present at 24 h of recovery. These changes in some regions, such as in CA1 and cortex, progress to neuronal death, while in other regions such as in CA2/CA3 are potentially reversible. (iii) Recovery of reactive neurons in CA2/CA3 region is age dependent in that there is significant recovery in the older age groups, but not in p13 rats. The pathogenetic mechanisms of the reactive neuronal changes, the chain of events leading to DND or neuronal recovery, and the influence of age in these processes remain to be elucidated.

UR - http://www.scopus.com/inward/record.url?scp=0032497124&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032497124&partnerID=8YFLogxK

U2 - 10.1016/S0165-3806(98)00077-7

DO - 10.1016/S0165-3806(98)00077-7

M3 - Article

C2 - 9729365

AN - SCOPUS:0032497124

VL - 109

SP - 169

EP - 177

JO - Developmental Brain Research

JF - Developmental Brain Research

SN - 0165-3806

IS - 2

ER -