Testing the no-hair nature of binary black holes using the consistency of multipolar gravitational radiation

Tousif Islam, Ajit Kumar Mehta, Abhirup Ghosh, Vijay Varma, Parameswaran Ajith, B. S. Sathyaprakash

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Gravitational-wave (GW) observations of binary black holes offer the best probes of the relativistic, strong-field regime of gravity. Gravitational radiation in the leading order is quadrupolar. However, nonquadrupole (higher order) modes make appreciable contribution to the radiation from binary black holes with large mass ratios and misaligned spins. The multipolar structure of the radiation is fully determined by the intrinsic parameters (masses and spin angular momenta of the companion black holes) of a binary in quasicircular orbit. Following our previous work [S. Dhanpal, A. Ghosh, A. K. Mehta, P. Ajith, and B. S. Sathyaprakash, Phys. Rev. D 99, 104056 (2019).PRVDAQ2470-001010.1103/PhysRevD.99.104056], we develop multiple ways of testing the consistency of the observed GW signal with the expected multipolar structure of radiation from binary black holes in general relativity. We call this a no-hair test of binary black holes as this is similar to testing the no-hair theorem for isolated black holes through mutual consistency of the quasinormal mode spectrum. We use Bayesian inference on simulated GW signals that are consistent/inconsistent with binary black holes in general relativity to demonstrate the power of the proposed tests. We also make estimate systematic errors arising as a result of neglecting companion spins.

Original languageEnglish (US)
Article number024032
JournalPhysical Review D
Volume101
Issue number2
DOIs
StatePublished - Jan 14 2020

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Testing the no-hair nature of binary black holes using the consistency of multipolar gravitational radiation'. Together they form a unique fingerprint.

Cite this