Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments

Zhiyong Meng, Fuqing Zhang

Research output: Contribution to journalArticlepeer-review

118 Scopus citations

Abstract

In Part I of this two-part work, the feasibility of using an ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation through various observing system simulation experiments was demonstrated assuming a perfect forecast model for a winter snowstorm event that occurred on 24-26 January 2000. The current study seeks to explore the performance of the EnKF for the same event in the presence of significant model errors due to physical parameterizations by assimilating synthetic sounding and surface observations with typical temporal and spatial resolutions. The EnKF performance with imperfect models is also examined for a warm-season mesoscale convective vortex (MCV) event that occurred on 10-13 June 2003. The significance of model error in both warm- and cold-season events is demonstrated when the use of different cumulus parameterization schemes within different ensembles results in significantly different forecasts in terms of both ensemble mean and spread. Nevertheless, the EnKF performed reasonably well in most experiments with the imperfect model assumption (though its performance can sometimes be significantly degraded). As in Part I, where the perfect model assumption was utilized, most analysis error reduction comes from larger scales. Results show that using a combination of different physical parameterization schemes in the ensemble forecast can significantly improve filter performance. A multischeme ensemble has the potential to provide better background error covariance estimation and a smaller ensemble bias. There are noticeable differences in the performance of the EnKF for different flow regimes. In the imperfect scenarios considered, the improvement over the reference ensembles (pure ensemble forecasts without data assimilation) after 24 h of assimilation for the winter snowstorm event ranges from 36% to 67%. This is higher than the 26%-45% improvement noted after 36 h of assimilation for the warm-season MCV event. Scale- and flow-dependent error growth dynamics and predictability are possible causes for the differences in improvement. Compared to the power spectrum analyses for the snowstorm, it is found that forecast errors and ensemble spreads in the warm-season MCV event have relatively smaller power at larger scales and an overall smaller growth rate.

Original languageEnglish (US)
Pages (from-to)1403-1423
Number of pages21
JournalMonthly Weather Review
Volume135
Issue number4
DOIs
StatePublished - Apr 2007

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint Dive into the research topics of 'Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments'. Together they form a unique fingerprint.

Cite this