The black hole-bulge relationship in luminous broad-line active galactic nuclei and host galaxies

Jiajian Shen, Daniel E.Vanden Berk, Donald P. Schneider, Patrick B. Hall

Research output: Contribution to journalArticle

76 Scopus citations

Abstract

We have measured the stellar velocity dispersions (σ *) and estimated the central black hole (BH) masses for over 900 broad-line active galactic nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes objects which have redshifts up to z = 0.452, high-quality spectra, and host galaxy spectra dominated by an early-type (bulge) component. The AGN and host galaxy spectral components were decomposed using an eigenspectrum technique. The BH masses (M BH) were estimated from the AGN broad-line widths, and the velocity dispersions were measured from the stellar absorption spectra of the host galaxies. The range of black hole masses covered by the sample is approximately 106 < M BH < 109 M . The host galaxy luminosity-velocity dispersion relationship follows the well-known Faber-Jackson relation for early-type galaxies, with a power-law slope 4.33 0.21. The estimated BH masses are correlated with both the host luminosities (LH ) and the stellar velocity dispersions (σ*), similar to the relationships found for low-redshift, bulge-dominated galaxies. The intrinsic scatters in the correlations are large (0.4 dex), but the very large sample size allows tight constraints to be placed on the mean relationships: M BH L 0.730.05 H and M BH σ3.340.24 *. The amplitude of the M BH- σ* relation depends on the estimated Eddington ratio, such that objects with larger Eddington ratios have smaller black hole masses than expected at a given velocity dispersion. While this dependence is probably caused at least in part by sample selection effects, it can account for the intrinsic scatter in the M BH* relation, and may tie together the accretion rate with physical properties of the host bulge component. We find no significant evolution in the M BH- σ* relation with redshift, up to z 0.4, after controlling for possible dependences on other variables. Interested readers can contact the authors to obtain the eigenspectrum decomposition coefficients of our objects.

Original languageEnglish (US)
Pages (from-to)928-946
Number of pages19
JournalAstronomical Journal
Volume135
Issue number3
DOIs
StatePublished - Mar 1 2008

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'The black hole-bulge relationship in luminous broad-line active galactic nuclei and host galaxies'. Together they form a unique fingerprint.

  • Cite this