Abstract
The synchronization of chaotic systems has received a great deal of attention. However, most of the literature has focused on systems that possess invariant manifolds that persist as the coupling is varied. In this paper, we describe the process whereby synchronization is lost in systems of nonidentical coupled chaotic oscillators without special symmetries. We qualitatively and quantitatively analyze such systems in terms of the evolution of the unstable periodic orbit structure. Our results are illustrated with data from physical experiments.
Original language | English (US) |
---|---|
Pages (from-to) | 2705-2713 |
Number of pages | 9 |
Journal | International Journal of Bifurcation and Chaos in Applied Sciences and Engineering |
Volume | 11 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2001 |
All Science Journal Classification (ASJC) codes
- Modeling and Simulation
- Engineering (miscellaneous)
- General
- Applied Mathematics