The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation

Michael Allan Arthur, S. O. Schlanger, H. C. Jenkyns

Research output: Contribution to journalArticle

135 Citations (Scopus)

Abstract

Correlation of the δ 13C spike with the well dated occurrences of strata rich in organic carbon detailed in Schlanger et al. (this volume), indicates that a global episode of intense organic carbon (orgC) burial took place during the latest Cenomanian-earliest Turonian 'Oceanic Anoxic Event' (OAE) (A. plenus through I. labiatus macrofossil zones and upper R. cushmani TRZ through W. archecretacea PRZ foraminiferal zones) over a period of no more than 1 million years (m.y.). The shape of the δ 13C curve indicates that rates of orgC burial gradually increased in the early part of the late Cenomanian, increased more rapidly in the later Cenomanian, and levelled off at peak values in latest Cenomanian-early Turonian time during the maximum rate of orgC burial. The δ 13C values decreased nearly to pre-late Cenomanian levels in the early to middle Turonian. The decrease in δ 13C reflects decreasing rates of orgC burial following the Cenomanian-Turonian 'oceanic anoxic event' as well as the probable oxidation and return of significant amounts of orgC to the oceans following regression and re-oxygenation of much of the deeper water masses in contact with the seafloor. The Cenomanian-Turonian OAE coincided with a maximum sea level highstand. We suggest that sea level, which may be responding to some volcano-tectonic event, is the common link and ultimately the driving force for orgC deposition in globally distributed basins under different climatic and ocean circulation regimes. The rate of production of warm, saline deep water may have been proportional to the area of shelf flooding such that the maximum occurred near the Cenomanian-Turonian boundary. As rates of deep-water formation increased, rates of upwelling of deeper oceanic water masses must also have increased thereby increasing sea-surface fertility and productivity. In somewhat restricted higher latitude basins, such as the Cretaceous Interior Seaway of North America, periodic high rates of freshwater runoff coupled with deepening seas during the transgression created periodic salinity stratification, oxygen depletion in bottom waters, and resultant enhanced orgC preservation. The disappearance of some types of keeled planktonic formainifers and ammonites at the Cenomanian-Turonian boundary is probably due to the rather sudden but short-term disappearance of suitable shallow midwater habitats because of widespread severe oxygen depletion in these levels. This interpretation is strengthened by the occurrence of benthic-free zones or depauperate benthic faunas near the Cenomanian-Turonian boundary in many localities.

Original languageEnglish (US)
Pages (from-to)401-420
Number of pages20
JournalGeological Society Special Publication
Volume26
DOIs
StatePublished - Dec 1 1987

Fingerprint

Turonian
Organic carbon
Biological materials
organic carbon
organic matter
Cenomanian-Turonian boundary
Sea level
Water
water mass
deep water
sea level
deep water formation
oxygen
Volcanoes
Oxygen
Oxygenation
oxygenation
highstand
Tectonics
rate

All Science Journal Classification (ASJC) codes

  • Water Science and Technology
  • Ocean Engineering
  • Geology

Cite this

@article{38876287b0384001a0f1d37b9a8d57b2,
title = "The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation",
abstract = "Correlation of the δ 13C spike with the well dated occurrences of strata rich in organic carbon detailed in Schlanger et al. (this volume), indicates that a global episode of intense organic carbon (orgC) burial took place during the latest Cenomanian-earliest Turonian 'Oceanic Anoxic Event' (OAE) (A. plenus through I. labiatus macrofossil zones and upper R. cushmani TRZ through W. archecretacea PRZ foraminiferal zones) over a period of no more than 1 million years (m.y.). The shape of the δ 13C curve indicates that rates of orgC burial gradually increased in the early part of the late Cenomanian, increased more rapidly in the later Cenomanian, and levelled off at peak values in latest Cenomanian-early Turonian time during the maximum rate of orgC burial. The δ 13C values decreased nearly to pre-late Cenomanian levels in the early to middle Turonian. The decrease in δ 13C reflects decreasing rates of orgC burial following the Cenomanian-Turonian 'oceanic anoxic event' as well as the probable oxidation and return of significant amounts of orgC to the oceans following regression and re-oxygenation of much of the deeper water masses in contact with the seafloor. The Cenomanian-Turonian OAE coincided with a maximum sea level highstand. We suggest that sea level, which may be responding to some volcano-tectonic event, is the common link and ultimately the driving force for orgC deposition in globally distributed basins under different climatic and ocean circulation regimes. The rate of production of warm, saline deep water may have been proportional to the area of shelf flooding such that the maximum occurred near the Cenomanian-Turonian boundary. As rates of deep-water formation increased, rates of upwelling of deeper oceanic water masses must also have increased thereby increasing sea-surface fertility and productivity. In somewhat restricted higher latitude basins, such as the Cretaceous Interior Seaway of North America, periodic high rates of freshwater runoff coupled with deepening seas during the transgression created periodic salinity stratification, oxygen depletion in bottom waters, and resultant enhanced orgC preservation. The disappearance of some types of keeled planktonic formainifers and ammonites at the Cenomanian-Turonian boundary is probably due to the rather sudden but short-term disappearance of suitable shallow midwater habitats because of widespread severe oxygen depletion in these levels. This interpretation is strengthened by the occurrence of benthic-free zones or depauperate benthic faunas near the Cenomanian-Turonian boundary in many localities.",
author = "Arthur, {Michael Allan} and Schlanger, {S. O.} and Jenkyns, {H. C.}",
year = "1987",
month = "12",
day = "1",
doi = "10.1144/GSL.SP.1987.026.01.25",
language = "English (US)",
volume = "26",
pages = "401--420",
journal = "Geological Society Special Publication",
issn = "0305-8719",
publisher = "Geological Society of London",

}

The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. / Arthur, Michael Allan; Schlanger, S. O.; Jenkyns, H. C.

In: Geological Society Special Publication, Vol. 26, 01.12.1987, p. 401-420.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation

AU - Arthur, Michael Allan

AU - Schlanger, S. O.

AU - Jenkyns, H. C.

PY - 1987/12/1

Y1 - 1987/12/1

N2 - Correlation of the δ 13C spike with the well dated occurrences of strata rich in organic carbon detailed in Schlanger et al. (this volume), indicates that a global episode of intense organic carbon (orgC) burial took place during the latest Cenomanian-earliest Turonian 'Oceanic Anoxic Event' (OAE) (A. plenus through I. labiatus macrofossil zones and upper R. cushmani TRZ through W. archecretacea PRZ foraminiferal zones) over a period of no more than 1 million years (m.y.). The shape of the δ 13C curve indicates that rates of orgC burial gradually increased in the early part of the late Cenomanian, increased more rapidly in the later Cenomanian, and levelled off at peak values in latest Cenomanian-early Turonian time during the maximum rate of orgC burial. The δ 13C values decreased nearly to pre-late Cenomanian levels in the early to middle Turonian. The decrease in δ 13C reflects decreasing rates of orgC burial following the Cenomanian-Turonian 'oceanic anoxic event' as well as the probable oxidation and return of significant amounts of orgC to the oceans following regression and re-oxygenation of much of the deeper water masses in contact with the seafloor. The Cenomanian-Turonian OAE coincided with a maximum sea level highstand. We suggest that sea level, which may be responding to some volcano-tectonic event, is the common link and ultimately the driving force for orgC deposition in globally distributed basins under different climatic and ocean circulation regimes. The rate of production of warm, saline deep water may have been proportional to the area of shelf flooding such that the maximum occurred near the Cenomanian-Turonian boundary. As rates of deep-water formation increased, rates of upwelling of deeper oceanic water masses must also have increased thereby increasing sea-surface fertility and productivity. In somewhat restricted higher latitude basins, such as the Cretaceous Interior Seaway of North America, periodic high rates of freshwater runoff coupled with deepening seas during the transgression created periodic salinity stratification, oxygen depletion in bottom waters, and resultant enhanced orgC preservation. The disappearance of some types of keeled planktonic formainifers and ammonites at the Cenomanian-Turonian boundary is probably due to the rather sudden but short-term disappearance of suitable shallow midwater habitats because of widespread severe oxygen depletion in these levels. This interpretation is strengthened by the occurrence of benthic-free zones or depauperate benthic faunas near the Cenomanian-Turonian boundary in many localities.

AB - Correlation of the δ 13C spike with the well dated occurrences of strata rich in organic carbon detailed in Schlanger et al. (this volume), indicates that a global episode of intense organic carbon (orgC) burial took place during the latest Cenomanian-earliest Turonian 'Oceanic Anoxic Event' (OAE) (A. plenus through I. labiatus macrofossil zones and upper R. cushmani TRZ through W. archecretacea PRZ foraminiferal zones) over a period of no more than 1 million years (m.y.). The shape of the δ 13C curve indicates that rates of orgC burial gradually increased in the early part of the late Cenomanian, increased more rapidly in the later Cenomanian, and levelled off at peak values in latest Cenomanian-early Turonian time during the maximum rate of orgC burial. The δ 13C values decreased nearly to pre-late Cenomanian levels in the early to middle Turonian. The decrease in δ 13C reflects decreasing rates of orgC burial following the Cenomanian-Turonian 'oceanic anoxic event' as well as the probable oxidation and return of significant amounts of orgC to the oceans following regression and re-oxygenation of much of the deeper water masses in contact with the seafloor. The Cenomanian-Turonian OAE coincided with a maximum sea level highstand. We suggest that sea level, which may be responding to some volcano-tectonic event, is the common link and ultimately the driving force for orgC deposition in globally distributed basins under different climatic and ocean circulation regimes. The rate of production of warm, saline deep water may have been proportional to the area of shelf flooding such that the maximum occurred near the Cenomanian-Turonian boundary. As rates of deep-water formation increased, rates of upwelling of deeper oceanic water masses must also have increased thereby increasing sea-surface fertility and productivity. In somewhat restricted higher latitude basins, such as the Cretaceous Interior Seaway of North America, periodic high rates of freshwater runoff coupled with deepening seas during the transgression created periodic salinity stratification, oxygen depletion in bottom waters, and resultant enhanced orgC preservation. The disappearance of some types of keeled planktonic formainifers and ammonites at the Cenomanian-Turonian boundary is probably due to the rather sudden but short-term disappearance of suitable shallow midwater habitats because of widespread severe oxygen depletion in these levels. This interpretation is strengthened by the occurrence of benthic-free zones or depauperate benthic faunas near the Cenomanian-Turonian boundary in many localities.

UR - http://www.scopus.com/inward/record.url?scp=80052368413&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052368413&partnerID=8YFLogxK

U2 - 10.1144/GSL.SP.1987.026.01.25

DO - 10.1144/GSL.SP.1987.026.01.25

M3 - Article

AN - SCOPUS:80052368413

VL - 26

SP - 401

EP - 420

JO - Geological Society Special Publication

JF - Geological Society Special Publication

SN - 0305-8719

ER -