TY - JOUR
T1 - The completed SDSS-IV extended baryon oscillation spectroscopic survey
T2 - Geometry and growth from the anisotropic void-galaxy correlation function in the luminous red galaxy sample
AU - Nadathur, Seshadri
AU - Woodfinden, Alex
AU - Percival, Will J.
AU - Aubert, Marie
AU - Bautista, Julian
AU - Dawson, Kyle
AU - Escoffier, Stéphanie
AU - Fromenteau, Sebastien
AU - Gil-Marín, Héctor
AU - Rich, James
AU - Ross, Ashley J.
AU - Rossi, Graziano
AU - Magaña, Mariana Vargas
AU - Brownstein, Joel R.
AU - Schneider, Donald P.
N1 - Funding Information:
MA and SE acknowledge support from the French National Research Agency by the eBOSS ANR grant (ANR-16-CE31-0021) and the OCEVU Labex (ANR-11-LABX-0060). GR acknowledges support from the National Research Foundation of Korea (NRF) through Grants No. 2017R1E1A1A01077508 and No. 2020R1A2C1005655 funded by the Korean Ministry of Education, Science and Technology (MoEST), and from the faculty research fund of Sejong University. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.
Publisher Copyright:
© 2020 The Author(s)
PY - 2020/12/1
Y1 - 2020/12/1
N2 - We present an analysis of the anisotropic redshift-space void-galaxy correlation in configuration space using the Sloan Digital Sky Survey extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 luminous red galaxy (LRG) sample. This sample consists of LRGs between redshifts 0.6 and 1.0, combined with the high redshift z > 0.6 tail of the Baryon Oscillation Spectroscopic Survey Data Release 12 CMASS sample. We use a reconstruction method to undo redshift-space distortion (RSD) effects from the galaxy field before applying a watershed void-finding algorithm to remove bias from the void selection. We then perform a joint fit to the multipole moments of the correlation function for the growth rate fσ 8 and the geometrical distance ratio DM/DH, finding f σ8 (zeff ) = 0.356 ± 0.079 and DM /DH (zeff ) = 0.868 ± 0.017 at the effective redshift zeff = 0.69 of the sample. The posterior parameter degeneracies are orthogonal to those from galaxy clustering analyses applied to the same data, and the constraint achieved on DM/DH is significantly tighter. In combination with the consensus galaxy BAO and full-shape analyses of the same sample, we obtain fσ 8 = 0.447 ± 0.039, DM/rd = 17.48 ± 0.23, and DH/rd = 20.10 ± 0.34. These values are in good agreement with the ΛCDM model predictions and represent reductions in the uncertainties of 13 per cent, 23 per cent, and 28 per cent, respectively, compared to the combined results from galaxy clustering, or an overall reduction of 55 per cent in the allowed volume of parameter space.
AB - We present an analysis of the anisotropic redshift-space void-galaxy correlation in configuration space using the Sloan Digital Sky Survey extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 luminous red galaxy (LRG) sample. This sample consists of LRGs between redshifts 0.6 and 1.0, combined with the high redshift z > 0.6 tail of the Baryon Oscillation Spectroscopic Survey Data Release 12 CMASS sample. We use a reconstruction method to undo redshift-space distortion (RSD) effects from the galaxy field before applying a watershed void-finding algorithm to remove bias from the void selection. We then perform a joint fit to the multipole moments of the correlation function for the growth rate fσ 8 and the geometrical distance ratio DM/DH, finding f σ8 (zeff ) = 0.356 ± 0.079 and DM /DH (zeff ) = 0.868 ± 0.017 at the effective redshift zeff = 0.69 of the sample. The posterior parameter degeneracies are orthogonal to those from galaxy clustering analyses applied to the same data, and the constraint achieved on DM/DH is significantly tighter. In combination with the consensus galaxy BAO and full-shape analyses of the same sample, we obtain fσ 8 = 0.447 ± 0.039, DM/rd = 17.48 ± 0.23, and DH/rd = 20.10 ± 0.34. These values are in good agreement with the ΛCDM model predictions and represent reductions in the uncertainties of 13 per cent, 23 per cent, and 28 per cent, respectively, compared to the combined results from galaxy clustering, or an overall reduction of 55 per cent in the allowed volume of parameter space.
UR - http://www.scopus.com/inward/record.url?scp=85097186529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097186529&partnerID=8YFLogxK
U2 - 10.1093/mnras/staa3074
DO - 10.1093/mnras/staa3074
M3 - Article
AN - SCOPUS:85097186529
VL - 499
SP - 4140
EP - 4157
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
SN - 0035-8711
IS - 3
ER -