The Concept of Slope: Comparing Teachers’ Concept Images and Instructional Content

Courtney Nagle, Deborah Moore-Russo

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

In the field of mathematics education, understanding teachers’ content knowledge (Grossman, 1995; Hill, Sleep, Lewis, & Ball, 2007; Munby, Russell, & Martin, 2001) and studying the relationship between content knowledge and instructional decisions (Fennema & Franke, 1992; Raymond, 1997) are both crucial. Teachers need a robust understanding of key mathematical topics and connections to make informed choices about which instructional tasks will be assigned and how the content will be represented (Ball & Bass, 2000, Fennema & Franke, 1992). Ma (1999) described this profound understanding of fundamental mathematics as how accomplished teachers conceptualize key ideas in mathematics with a deep and flexible understanding so that they are able to represent those ideas in multiple ways and to recognize how those ideas fit into the preK-16 curriculum. Slope is a fundamental topic in the secondary mathematics curricula. Unit rate and proportional relationships introduced in sixth grade prepare students for interpreting equations such as y = 2x-3 as functions with particular, linear behavior in eighth grade (National Governors Association [NGA] Center for Best Practices & Council of Chief State School Officers [CSSO]), 2010; National Council of Teachers of Mathematics [NCTM], 2006). The focus on relationships with constant rate of change leads to distinctions between linear and non-linear functions (Yerushalmy, 1997) and the idea of average rate of change in high school (NGA Center for Best Practices & CCSSO, 2010). Ultimately, these ideas prepare students for instantaneous rates of change and the concept of a derivative in calculus. The diversity of conceptualizations and representations of slope across the secondary mathematics curriculum presents a challenge for secondary teachers. These teachers must work flexibly and fluently with various representations in many contexts in order for their students to build a coherent, connected conceptualization of slope. Since secondary mathematics teachers need a deep understanding of slope to mediate students’ conceptual development of this key topic, the study reported here investigates both how teachers think about and present slope.

Original languageEnglish (US)
Pages (from-to)1-18
Number of pages18
JournalInvestigations in Mathematics Learning
Volume6
Issue number2
DOIs
StatePublished - Jan 1 2013

Fingerprint

Slope
mathematics
teacher
Rate of change
Best Practice
Instantaneous rate of change
Ball
curriculum
best practice
student
school grade
Sleep
Mathematics Education
Nonlinear Function
Concepts
National Council
Calculus
Directly proportional
sleep
school

All Science Journal Classification (ASJC) codes

  • Education
  • Mathematics(all)

Cite this

@article{efb67197270d4c8d86b08737e7a52393,
title = "The Concept of Slope: Comparing Teachers’ Concept Images and Instructional Content",
abstract = "In the field of mathematics education, understanding teachers’ content knowledge (Grossman, 1995; Hill, Sleep, Lewis, & Ball, 2007; Munby, Russell, & Martin, 2001) and studying the relationship between content knowledge and instructional decisions (Fennema & Franke, 1992; Raymond, 1997) are both crucial. Teachers need a robust understanding of key mathematical topics and connections to make informed choices about which instructional tasks will be assigned and how the content will be represented (Ball & Bass, 2000, Fennema & Franke, 1992). Ma (1999) described this profound understanding of fundamental mathematics as how accomplished teachers conceptualize key ideas in mathematics with a deep and flexible understanding so that they are able to represent those ideas in multiple ways and to recognize how those ideas fit into the preK-16 curriculum. Slope is a fundamental topic in the secondary mathematics curricula. Unit rate and proportional relationships introduced in sixth grade prepare students for interpreting equations such as y = 2x-3 as functions with particular, linear behavior in eighth grade (National Governors Association [NGA] Center for Best Practices & Council of Chief State School Officers [CSSO]), 2010; National Council of Teachers of Mathematics [NCTM], 2006). The focus on relationships with constant rate of change leads to distinctions between linear and non-linear functions (Yerushalmy, 1997) and the idea of average rate of change in high school (NGA Center for Best Practices & CCSSO, 2010). Ultimately, these ideas prepare students for instantaneous rates of change and the concept of a derivative in calculus. The diversity of conceptualizations and representations of slope across the secondary mathematics curriculum presents a challenge for secondary teachers. These teachers must work flexibly and fluently with various representations in many contexts in order for their students to build a coherent, connected conceptualization of slope. Since secondary mathematics teachers need a deep understanding of slope to mediate students’ conceptual development of this key topic, the study reported here investigates both how teachers think about and present slope.",
author = "Courtney Nagle and Deborah Moore-Russo",
year = "2013",
month = "1",
day = "1",
doi = "10.1080/24727466.2013.11790330",
language = "English (US)",
volume = "6",
pages = "1--18",
journal = "Investigations in Mathematics Learning",
issn = "1947-7503",
number = "2",

}

The Concept of Slope : Comparing Teachers’ Concept Images and Instructional Content. / Nagle, Courtney; Moore-Russo, Deborah.

In: Investigations in Mathematics Learning, Vol. 6, No. 2, 01.01.2013, p. 1-18.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The Concept of Slope

T2 - Comparing Teachers’ Concept Images and Instructional Content

AU - Nagle, Courtney

AU - Moore-Russo, Deborah

PY - 2013/1/1

Y1 - 2013/1/1

N2 - In the field of mathematics education, understanding teachers’ content knowledge (Grossman, 1995; Hill, Sleep, Lewis, & Ball, 2007; Munby, Russell, & Martin, 2001) and studying the relationship between content knowledge and instructional decisions (Fennema & Franke, 1992; Raymond, 1997) are both crucial. Teachers need a robust understanding of key mathematical topics and connections to make informed choices about which instructional tasks will be assigned and how the content will be represented (Ball & Bass, 2000, Fennema & Franke, 1992). Ma (1999) described this profound understanding of fundamental mathematics as how accomplished teachers conceptualize key ideas in mathematics with a deep and flexible understanding so that they are able to represent those ideas in multiple ways and to recognize how those ideas fit into the preK-16 curriculum. Slope is a fundamental topic in the secondary mathematics curricula. Unit rate and proportional relationships introduced in sixth grade prepare students for interpreting equations such as y = 2x-3 as functions with particular, linear behavior in eighth grade (National Governors Association [NGA] Center for Best Practices & Council of Chief State School Officers [CSSO]), 2010; National Council of Teachers of Mathematics [NCTM], 2006). The focus on relationships with constant rate of change leads to distinctions between linear and non-linear functions (Yerushalmy, 1997) and the idea of average rate of change in high school (NGA Center for Best Practices & CCSSO, 2010). Ultimately, these ideas prepare students for instantaneous rates of change and the concept of a derivative in calculus. The diversity of conceptualizations and representations of slope across the secondary mathematics curriculum presents a challenge for secondary teachers. These teachers must work flexibly and fluently with various representations in many contexts in order for their students to build a coherent, connected conceptualization of slope. Since secondary mathematics teachers need a deep understanding of slope to mediate students’ conceptual development of this key topic, the study reported here investigates both how teachers think about and present slope.

AB - In the field of mathematics education, understanding teachers’ content knowledge (Grossman, 1995; Hill, Sleep, Lewis, & Ball, 2007; Munby, Russell, & Martin, 2001) and studying the relationship between content knowledge and instructional decisions (Fennema & Franke, 1992; Raymond, 1997) are both crucial. Teachers need a robust understanding of key mathematical topics and connections to make informed choices about which instructional tasks will be assigned and how the content will be represented (Ball & Bass, 2000, Fennema & Franke, 1992). Ma (1999) described this profound understanding of fundamental mathematics as how accomplished teachers conceptualize key ideas in mathematics with a deep and flexible understanding so that they are able to represent those ideas in multiple ways and to recognize how those ideas fit into the preK-16 curriculum. Slope is a fundamental topic in the secondary mathematics curricula. Unit rate and proportional relationships introduced in sixth grade prepare students for interpreting equations such as y = 2x-3 as functions with particular, linear behavior in eighth grade (National Governors Association [NGA] Center for Best Practices & Council of Chief State School Officers [CSSO]), 2010; National Council of Teachers of Mathematics [NCTM], 2006). The focus on relationships with constant rate of change leads to distinctions between linear and non-linear functions (Yerushalmy, 1997) and the idea of average rate of change in high school (NGA Center for Best Practices & CCSSO, 2010). Ultimately, these ideas prepare students for instantaneous rates of change and the concept of a derivative in calculus. The diversity of conceptualizations and representations of slope across the secondary mathematics curriculum presents a challenge for secondary teachers. These teachers must work flexibly and fluently with various representations in many contexts in order for their students to build a coherent, connected conceptualization of slope. Since secondary mathematics teachers need a deep understanding of slope to mediate students’ conceptual development of this key topic, the study reported here investigates both how teachers think about and present slope.

UR - http://www.scopus.com/inward/record.url?scp=84939890913&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84939890913&partnerID=8YFLogxK

U2 - 10.1080/24727466.2013.11790330

DO - 10.1080/24727466.2013.11790330

M3 - Article

AN - SCOPUS:84939890913

VL - 6

SP - 1

EP - 18

JO - Investigations in Mathematics Learning

JF - Investigations in Mathematics Learning

SN - 1947-7503

IS - 2

ER -