The deglaciation of the northern hemisphere: A global perspective

Richard B. Alley, Peter U. Clark

Research output: Contribution to journalArticlepeer-review

281 Citations (SciVal)


Orbitally induced increase in northern summer insolation after growth of a large ice sheet triggered deglaciation and associated global warming. Ice-albedo, sea-level, and greenhouse-gas feedbacks, together with tropical warming from weakening winds in response to polar amplification of warming, cause regional-to-global (near-) synchronization of deglaciation. Effects were larger at orbital rather than millennial frequencies because ice sheets and carbon dioxide vary slowly. Ice-sheet-linked changes in freshwater delivery to the North Atlantic, and possibly free oscillations in the climate system, forced millennial climate oscillations associated with changes in North Atlantic deep water (NADW) flow. The North Atlantic typically operates in one of three modes: modern, glacial, and Heinrich. Deglaciation occurred from a glacial-mode ocean that, in comparison to modern, had shallower depth of penetration of NADW formed further south, causing strong northern cooling and the widespread cold, dry, and windy conditions associated with the glacial maximum and the cold phases of the millennial Dansgaard-Oeschger oscillations. The glacial mode was punctuated by meltwater-forced Heinrich conditions that caused only small additional cooling at high northern latitudes, but greatly reduced the formation of NADW and triggered an oceanic 'seesaw' that warmed some high-latitude southern regions centered in the South Atlantic.

Original languageEnglish (US)
Pages (from-to)149-182
Number of pages34
JournalAnnual Review of Earth and Planetary Sciences
StatePublished - 1999

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science


Dive into the research topics of 'The deglaciation of the northern hemisphere: A global perspective'. Together they form a unique fingerprint.

Cite this