Abstract
Let s ≥ 3 be a fixed positive integer and let a 1 ; ⋯ ; a s ϵ Z be arbitrary. We show that, on average over k, the density of numbers represented by the degree k diagonal form a 1 x k 1 + · · · + a s x k s decays rapidly with respect to k.
Original language | English (US) |
---|---|
Pages (from-to) | 542-550 |
Number of pages | 9 |
Journal | Mathematika |
Volume | 64 |
Issue number | 2 |
DOIs | |
State | Published - Jan 1 2018 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Mathematics(all)
Cite this
}
THE DENSITY of NUMBERS REPRESENTED by DIAGONAL FORMS of LARGE DEGREE. / Hanson, Brandon; Zaman, Asif.
In: Mathematika, Vol. 64, No. 2, 01.01.2018, p. 542-550.Research output: Contribution to journal › Article
TY - JOUR
T1 - THE DENSITY of NUMBERS REPRESENTED by DIAGONAL FORMS of LARGE DEGREE
AU - Hanson, Brandon
AU - Zaman, Asif
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Let s ≥ 3 be a fixed positive integer and let a 1 ; ⋯ ; a s ϵ Z be arbitrary. We show that, on average over k, the density of numbers represented by the degree k diagonal form a 1 x k 1 + · · · + a s x k s decays rapidly with respect to k.
AB - Let s ≥ 3 be a fixed positive integer and let a 1 ; ⋯ ; a s ϵ Z be arbitrary. We show that, on average over k, the density of numbers represented by the degree k diagonal form a 1 x k 1 + · · · + a s x k s decays rapidly with respect to k.
UR - http://www.scopus.com/inward/record.url?scp=85064160488&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064160488&partnerID=8YFLogxK
U2 - 10.1112/S0025579318000190
DO - 10.1112/S0025579318000190
M3 - Article
AN - SCOPUS:85064160488
VL - 64
SP - 542
EP - 550
JO - Mathematika
JF - Mathematika
SN - 0025-5793
IS - 2
ER -