The ecology of new constituents of the tick virome and their relevance to public health

Kurt J. Vandegrift, Amit Kapoor

Research output: Contribution to journalReview article

2 Citations (Scopus)

Abstract

Ticks are vectors of several pathogens that can be transmitted to humans and their geographic ranges are expanding. The exposure of ticks to new hosts in a rapidly changing environment is likely to further increase the prevalence and diversity of tick-borne diseases. Although ticks are known to transmit bacteria and viruses, most studies of tick-borne disease have focused upon Lyme disease, which is caused by infection with Borrelia burgdorferi. Until recently, ticks were considered as the vectors of a few viruses that can infect humans and animals, such as Powassan, Tick-Borne Encephalitis and Crimean–Congo hemorrhagic fever viruses. Interestingly, however, several new studies undertaken to reveal the etiology of unknown human febrile illnesses, or to describe the virome of ticks collected in different countries, have uncovered a plethora of novel viruses in ticks. Here, we compared the virome compositions of ticks from different countries and our analysis indicates that the global tick virome is dominated by RNA viruses. Comparative phylogenetic analyses of tick viruses from these different countries reveals distinct geographical clustering of the new tick viruses. Some of these new tick RNA viruses (notably severe fever with thrombocytopenia syndrome virus and Heartland virus) were found to be associated with serious human diseases. Their relevance to public health remains unknown. It is plausible that most of these newly identified tick viruses are of endogenous origin or are restricted in their transmission potential, but the efforts to identify new tick viruses should continue. Indeed, future research aimed at defining the origin, the ecology and the spillover potential of this novel viral biodiversity will be critical to understand the relevance to public health.

Original languageEnglish (US)
Article number529
JournalViruses
Volume11
Issue number6
DOIs
StatePublished - Jun 2019

Fingerprint

Ticks
Ecology
Public Health
Viruses
Tick-Borne Diseases
Fever
RNA Viruses
Tick-Borne Encephalitis
Borrelia burgdorferi
Lyme Disease
Biodiversity
Thrombocytopenia
Cluster Analysis

All Science Journal Classification (ASJC) codes

  • Infectious Diseases
  • Virology

Cite this

@article{d28b8c4dc464482aa1115bd057299da2,
title = "The ecology of new constituents of the tick virome and their relevance to public health",
abstract = "Ticks are vectors of several pathogens that can be transmitted to humans and their geographic ranges are expanding. The exposure of ticks to new hosts in a rapidly changing environment is likely to further increase the prevalence and diversity of tick-borne diseases. Although ticks are known to transmit bacteria and viruses, most studies of tick-borne disease have focused upon Lyme disease, which is caused by infection with Borrelia burgdorferi. Until recently, ticks were considered as the vectors of a few viruses that can infect humans and animals, such as Powassan, Tick-Borne Encephalitis and Crimean–Congo hemorrhagic fever viruses. Interestingly, however, several new studies undertaken to reveal the etiology of unknown human febrile illnesses, or to describe the virome of ticks collected in different countries, have uncovered a plethora of novel viruses in ticks. Here, we compared the virome compositions of ticks from different countries and our analysis indicates that the global tick virome is dominated by RNA viruses. Comparative phylogenetic analyses of tick viruses from these different countries reveals distinct geographical clustering of the new tick viruses. Some of these new tick RNA viruses (notably severe fever with thrombocytopenia syndrome virus and Heartland virus) were found to be associated with serious human diseases. Their relevance to public health remains unknown. It is plausible that most of these newly identified tick viruses are of endogenous origin or are restricted in their transmission potential, but the efforts to identify new tick viruses should continue. Indeed, future research aimed at defining the origin, the ecology and the spillover potential of this novel viral biodiversity will be critical to understand the relevance to public health.",
author = "Vandegrift, {Kurt J.} and Amit Kapoor",
year = "2019",
month = "6",
doi = "10.3390/v11060529",
language = "English (US)",
volume = "11",
journal = "Viruses",
issn = "1999-4915",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "6",

}

The ecology of new constituents of the tick virome and their relevance to public health. / Vandegrift, Kurt J.; Kapoor, Amit.

In: Viruses, Vol. 11, No. 6, 529, 06.2019.

Research output: Contribution to journalReview article

TY - JOUR

T1 - The ecology of new constituents of the tick virome and their relevance to public health

AU - Vandegrift, Kurt J.

AU - Kapoor, Amit

PY - 2019/6

Y1 - 2019/6

N2 - Ticks are vectors of several pathogens that can be transmitted to humans and their geographic ranges are expanding. The exposure of ticks to new hosts in a rapidly changing environment is likely to further increase the prevalence and diversity of tick-borne diseases. Although ticks are known to transmit bacteria and viruses, most studies of tick-borne disease have focused upon Lyme disease, which is caused by infection with Borrelia burgdorferi. Until recently, ticks were considered as the vectors of a few viruses that can infect humans and animals, such as Powassan, Tick-Borne Encephalitis and Crimean–Congo hemorrhagic fever viruses. Interestingly, however, several new studies undertaken to reveal the etiology of unknown human febrile illnesses, or to describe the virome of ticks collected in different countries, have uncovered a plethora of novel viruses in ticks. Here, we compared the virome compositions of ticks from different countries and our analysis indicates that the global tick virome is dominated by RNA viruses. Comparative phylogenetic analyses of tick viruses from these different countries reveals distinct geographical clustering of the new tick viruses. Some of these new tick RNA viruses (notably severe fever with thrombocytopenia syndrome virus and Heartland virus) were found to be associated with serious human diseases. Their relevance to public health remains unknown. It is plausible that most of these newly identified tick viruses are of endogenous origin or are restricted in their transmission potential, but the efforts to identify new tick viruses should continue. Indeed, future research aimed at defining the origin, the ecology and the spillover potential of this novel viral biodiversity will be critical to understand the relevance to public health.

AB - Ticks are vectors of several pathogens that can be transmitted to humans and their geographic ranges are expanding. The exposure of ticks to new hosts in a rapidly changing environment is likely to further increase the prevalence and diversity of tick-borne diseases. Although ticks are known to transmit bacteria and viruses, most studies of tick-borne disease have focused upon Lyme disease, which is caused by infection with Borrelia burgdorferi. Until recently, ticks were considered as the vectors of a few viruses that can infect humans and animals, such as Powassan, Tick-Borne Encephalitis and Crimean–Congo hemorrhagic fever viruses. Interestingly, however, several new studies undertaken to reveal the etiology of unknown human febrile illnesses, or to describe the virome of ticks collected in different countries, have uncovered a plethora of novel viruses in ticks. Here, we compared the virome compositions of ticks from different countries and our analysis indicates that the global tick virome is dominated by RNA viruses. Comparative phylogenetic analyses of tick viruses from these different countries reveals distinct geographical clustering of the new tick viruses. Some of these new tick RNA viruses (notably severe fever with thrombocytopenia syndrome virus and Heartland virus) were found to be associated with serious human diseases. Their relevance to public health remains unknown. It is plausible that most of these newly identified tick viruses are of endogenous origin or are restricted in their transmission potential, but the efforts to identify new tick viruses should continue. Indeed, future research aimed at defining the origin, the ecology and the spillover potential of this novel viral biodiversity will be critical to understand the relevance to public health.

UR - http://www.scopus.com/inward/record.url?scp=85067795341&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067795341&partnerID=8YFLogxK

U2 - 10.3390/v11060529

DO - 10.3390/v11060529

M3 - Review article

C2 - 31181599

AN - SCOPUS:85067795341

VL - 11

JO - Viruses

JF - Viruses

SN - 1999-4915

IS - 6

M1 - 529

ER -