The Effects of Na2O and SiO2 on Liquid Phase Sintering of Bayer Al2O3

Tobias Frueh, Elizabeth R. Kupp, Charles Compson, Joe Atria, Gary L. Messing

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

To determine how grain-boundary composition affects the liquid phase sintering of MgO-free Bayer process aluminas, samples were singly or co-doped with up to 1029 ppm Na2O and 603 ppm SiO2 and heated at 1525°C up to 8 h. Na2O retards densification of samples from the onset of sintering and up to hold times of 30 min at 1525°C compared to the undoped samples, but similar to the as-received, MgO-free Al2O3, Na2O-doped samples sinter to 98% density with average grain sizes of ~3 μm after 8 h. Increasing SiO2 concentration significantly retards densification at all hold times up to 8 h. The estimated viscosities (20−400 Pa·s) of the 0.3 to 1.8 nm thick siliceous grain-boundary films in this study indicate that diffusion greatly depends on the composition of the liquid grain-boundary phase. For low Na2O/SiO2 ratios, densification of Bayer Al2O3 at 1525°C is controlled by diffusion of Al3+ through the grain-boundary liquid, whereas for high Na2O/SiO2 ratios, densification can be governed by either the interface reaction (i.e., dissolution) of Al2O3 or diffusion of Al3+. Increasing Na2O in SiO2-doped samples increases diffusion of Al3+ and Al2O3 solubility in the liquid, and thus densification increases by 1%. Based on these findings, we conclude that Bayer Al2O3 densification can be manipulated by adjusting the Na2O to SiO2 ratio.

Original languageEnglish (US)
Pages (from-to)2267-2272
Number of pages6
JournalJournal of the American Ceramic Society
Volume99
Issue number7
DOIs
StatePublished - Jan 1 2016

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'The Effects of Na<sub>2</sub>O and SiO<sub>2</sub> on Liquid Phase Sintering of Bayer Al<sub>2</sub>O<sub>3</sub>'. Together they form a unique fingerprint.

Cite this