The frequency of extreme X-ray variability for radio-quiet quasars

John D. Timlin, W. N. Brandt, S. Zhu, H. Liu, B. Luo, Q. Ni

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

We analyse 1598 serendipitous Chandra X-ray observations of 462 radio-quiet quasars to constrain the frequency of extreme amplitude X-ray variability that is intrinsic to the quasar corona and innermost accretion flow. The quasars in this investigation are all spectroscopically confirmed, optically bright (mi ≤ 20.2), and contain no identifiable broad absorption lines in their optical/ultraviolet spectra. This sample includes quasars spanning z ≈ 0.1-4 and probes X-ray variability on time-scales of up to ≈12 rest-frame years. Variability amplitudes are computed between every epoch of observation for each quasar and are analysed as a function of time-scale and luminosity. The tail-heavy distributions of variability amplitudes at all time-scales indicate that extreme X-ray variations are driven by an additional physical mechanism and not just typical random fluctuations of the coronal emission. Similarly, extreme X-ray variations of low-luminosity quasars seem to be driven by an additional physical mechanism, whereas high-luminosity quasars seem more consistent with random fluctuations. The amplitude at which an X-ray variability event can be considered extreme is quantified for different time-scales and luminosities. Extreme X-ray variations occur more frequently at long time-scales (Δt 300 d) than at shorter time-scales and in low-luminosity quasars compared to high-luminosity quasars over a similar time-scale. A binomial analysis indicates that extreme intrinsic X-ray variations are rare, with a maximum occurrence rate of < 2.4% of observations. Finally, we present X-ray variability and basic optical emission-line properties of three archival quasars that have been newly discovered to exhibit extreme X-ray variability.

Original languageEnglish (US)
Pages (from-to)4033-4050
Number of pages18
JournalMonthly Notices of the Royal Astronomical Society
Volume498
Issue number3
DOIs
StatePublished - Nov 1 2020

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The frequency of extreme X-ray variability for radio-quiet quasars'. Together they form a unique fingerprint.

Cite this