The impact of graphene properties on GaN and AlN nucleation

Zakaria Y. Al Balushi, Takahira Miyagi, Yu Chuan Lin, Ke Wang, Lazaro Calderin, Ganesh Bhimanapati, Joan M. Redwing, Joshua A. Robinson

Research output: Contribution to journalArticle

49 Scopus citations

Abstract

The use of graphene as a template layer for the heteroepitaxy of III-nitrides (GaN and AlN) has gained interest due to the hexagonal arrangement of the sp2 hybridized carbon atoms being similar to the (0001) c-plane of wurtzite GaN. In this study, the nucleation of GaN and AlN by metalorganic chemical vapor deposition on quasi-free standing epitaxial graphene (EG) was investigated. We observed that the nucleation of AlN and GaN was preferential along the periodic (11¯0n) EG coated step edges and at defects sites on the (0001) terraces due to the enhanced chemical reactivity at those regions. The density of nuclei on the (0001) terraces of EG increased with the incorporation of nitrogen defects into the graphene lattice via NH3 exposure as was evident from surface chemical analysis by XPS. Raman spectral mapping showed that GaN selectively nucleates on regions of few-layered EG as opposed to regions of multi-layered EG. HR-TEM also revealed that the EG underlayers were highly defective in the region of GaN nucleation, however, the GaN nuclei were single crystalline, c-axis oriented and were free of threading dislocations. In contrast, polycrystalline islands of AlN were found to nucleate on EG without producing disorder in the underlying EG.

Original languageEnglish (US)
Pages (from-to)81-88
Number of pages8
JournalSurface Science
Volume634
DOIs
StatePublished - Apr 2015

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Cite this