The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction

David C. Hietala, Casey M. Godwin, Bradley J. Cardinale, Phillip E. Savage

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We examined the independent and coupled effects of temperature (150–350 °C), reaction time (1–100 min), slurry concentration (30 and 120 g Lrxn-1), biochemical composition (5.2–28.5 wt% lipid, 14.7–50.9 wt% protein), and species identity (Nannochloropsis, Chlorella, and Spirulina) on the yield and composition of biocrude oil produced by hydrothermal liquefaction. Measured properties included gravimetric yield, elemental (C, H, N, S, O, and P) composition and recovery, higher-heating value and energy recovery, and fatty-acid profile, content, and recovery. All examined factors affect the yield and composition of the biocrude, with biochemical composition and temperature exhibiting the greatest impacts. We probed the effects of slurry concentration and species identity over numerous combinations of temperature, reaction time, and biochemical composition that were previously unexamined, demonstrating the effects of both slurry concentration and species identity to be of the same order of magnitude as reaction time. Increased slurry concentration appears to promote Maillard reactions that result in increased biocrude yield, C content, and N content and decreased O content. Moreover, the extent of these Maillard reactions may be affected by the ratio of proteins to carbohydrates, with carbohydrates serving as the limiting reactant. High-lipid, 30 g Lrxn-1 slurries reacted at 300 °C for 3.2 min (including 1 min heat-up) generally yielded more biocrude with higher C and H content and lower N, S, and O content than did their high-protein, 120 g Lrxn-1, 200 °C, or 31.6 min counterparts. This condition also provided recoveries of saturated, monounsaturated, and polyunsaturated fatty acids in the biocrude of up to 89.3, 80.1, and 64.7 wt%, respectively, demonstrating for the first time that fast hydrothermal liquefaction can be an effective means of recovering high-value unsaturated fatty acids. The results and expansive experimental data herein provide a deeper level of understanding for microalgal hydrothermal liquefaction, enabling a greater extent of reaction engineering for the process than previously possible.

Original languageEnglish (US)
Pages (from-to)714-728
Number of pages15
JournalApplied Energy
Volume235
DOIs
StatePublished - Feb 1 2019

Fingerprint

Liquefaction
liquefaction
Feedstocks
slurry
biochemical composition
fatty acid
Chemical analysis
protein
Recovery
carbohydrate
lipid
Carbohydrates
Proteins
Lipids
temperature
Monounsaturated fatty acids
Saturated fatty acids
Polyunsaturated fatty acids
Unsaturated fatty acids
Slurries

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

Cite this

@article{3bd4dcac0aaf4cefb72ce105ba6ef901,
title = "The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction",
abstract = "We examined the independent and coupled effects of temperature (150–350 °C), reaction time (1–100 min), slurry concentration (30 and 120 g Lrxn-1), biochemical composition (5.2–28.5 wt{\%} lipid, 14.7–50.9 wt{\%} protein), and species identity (Nannochloropsis, Chlorella, and Spirulina) on the yield and composition of biocrude oil produced by hydrothermal liquefaction. Measured properties included gravimetric yield, elemental (C, H, N, S, O, and P) composition and recovery, higher-heating value and energy recovery, and fatty-acid profile, content, and recovery. All examined factors affect the yield and composition of the biocrude, with biochemical composition and temperature exhibiting the greatest impacts. We probed the effects of slurry concentration and species identity over numerous combinations of temperature, reaction time, and biochemical composition that were previously unexamined, demonstrating the effects of both slurry concentration and species identity to be of the same order of magnitude as reaction time. Increased slurry concentration appears to promote Maillard reactions that result in increased biocrude yield, C content, and N content and decreased O content. Moreover, the extent of these Maillard reactions may be affected by the ratio of proteins to carbohydrates, with carbohydrates serving as the limiting reactant. High-lipid, 30 g Lrxn-1 slurries reacted at 300 °C for 3.2 min (including 1 min heat-up) generally yielded more biocrude with higher C and H content and lower N, S, and O content than did their high-protein, 120 g Lrxn-1, 200 °C, or 31.6 min counterparts. This condition also provided recoveries of saturated, monounsaturated, and polyunsaturated fatty acids in the biocrude of up to 89.3, 80.1, and 64.7 wt{\%}, respectively, demonstrating for the first time that fast hydrothermal liquefaction can be an effective means of recovering high-value unsaturated fatty acids. The results and expansive experimental data herein provide a deeper level of understanding for microalgal hydrothermal liquefaction, enabling a greater extent of reaction engineering for the process than previously possible.",
author = "Hietala, {David C.} and Godwin, {Casey M.} and Cardinale, {Bradley J.} and Savage, {Phillip E.}",
year = "2019",
month = "2",
day = "1",
doi = "10.1016/j.apenergy.2018.10.120",
language = "English (US)",
volume = "235",
pages = "714--728",
journal = "Applied Energy",
issn = "0306-2619",
publisher = "Elsevier BV",

}

The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction. / Hietala, David C.; Godwin, Casey M.; Cardinale, Bradley J.; Savage, Phillip E.

In: Applied Energy, Vol. 235, 01.02.2019, p. 714-728.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction

AU - Hietala, David C.

AU - Godwin, Casey M.

AU - Cardinale, Bradley J.

AU - Savage, Phillip E.

PY - 2019/2/1

Y1 - 2019/2/1

N2 - We examined the independent and coupled effects of temperature (150–350 °C), reaction time (1–100 min), slurry concentration (30 and 120 g Lrxn-1), biochemical composition (5.2–28.5 wt% lipid, 14.7–50.9 wt% protein), and species identity (Nannochloropsis, Chlorella, and Spirulina) on the yield and composition of biocrude oil produced by hydrothermal liquefaction. Measured properties included gravimetric yield, elemental (C, H, N, S, O, and P) composition and recovery, higher-heating value and energy recovery, and fatty-acid profile, content, and recovery. All examined factors affect the yield and composition of the biocrude, with biochemical composition and temperature exhibiting the greatest impacts. We probed the effects of slurry concentration and species identity over numerous combinations of temperature, reaction time, and biochemical composition that were previously unexamined, demonstrating the effects of both slurry concentration and species identity to be of the same order of magnitude as reaction time. Increased slurry concentration appears to promote Maillard reactions that result in increased biocrude yield, C content, and N content and decreased O content. Moreover, the extent of these Maillard reactions may be affected by the ratio of proteins to carbohydrates, with carbohydrates serving as the limiting reactant. High-lipid, 30 g Lrxn-1 slurries reacted at 300 °C for 3.2 min (including 1 min heat-up) generally yielded more biocrude with higher C and H content and lower N, S, and O content than did their high-protein, 120 g Lrxn-1, 200 °C, or 31.6 min counterparts. This condition also provided recoveries of saturated, monounsaturated, and polyunsaturated fatty acids in the biocrude of up to 89.3, 80.1, and 64.7 wt%, respectively, demonstrating for the first time that fast hydrothermal liquefaction can be an effective means of recovering high-value unsaturated fatty acids. The results and expansive experimental data herein provide a deeper level of understanding for microalgal hydrothermal liquefaction, enabling a greater extent of reaction engineering for the process than previously possible.

AB - We examined the independent and coupled effects of temperature (150–350 °C), reaction time (1–100 min), slurry concentration (30 and 120 g Lrxn-1), biochemical composition (5.2–28.5 wt% lipid, 14.7–50.9 wt% protein), and species identity (Nannochloropsis, Chlorella, and Spirulina) on the yield and composition of biocrude oil produced by hydrothermal liquefaction. Measured properties included gravimetric yield, elemental (C, H, N, S, O, and P) composition and recovery, higher-heating value and energy recovery, and fatty-acid profile, content, and recovery. All examined factors affect the yield and composition of the biocrude, with biochemical composition and temperature exhibiting the greatest impacts. We probed the effects of slurry concentration and species identity over numerous combinations of temperature, reaction time, and biochemical composition that were previously unexamined, demonstrating the effects of both slurry concentration and species identity to be of the same order of magnitude as reaction time. Increased slurry concentration appears to promote Maillard reactions that result in increased biocrude yield, C content, and N content and decreased O content. Moreover, the extent of these Maillard reactions may be affected by the ratio of proteins to carbohydrates, with carbohydrates serving as the limiting reactant. High-lipid, 30 g Lrxn-1 slurries reacted at 300 °C for 3.2 min (including 1 min heat-up) generally yielded more biocrude with higher C and H content and lower N, S, and O content than did their high-protein, 120 g Lrxn-1, 200 °C, or 31.6 min counterparts. This condition also provided recoveries of saturated, monounsaturated, and polyunsaturated fatty acids in the biocrude of up to 89.3, 80.1, and 64.7 wt%, respectively, demonstrating for the first time that fast hydrothermal liquefaction can be an effective means of recovering high-value unsaturated fatty acids. The results and expansive experimental data herein provide a deeper level of understanding for microalgal hydrothermal liquefaction, enabling a greater extent of reaction engineering for the process than previously possible.

UR - http://www.scopus.com/inward/record.url?scp=85056448630&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056448630&partnerID=8YFLogxK

U2 - 10.1016/j.apenergy.2018.10.120

DO - 10.1016/j.apenergy.2018.10.120

M3 - Article

AN - SCOPUS:85056448630

VL - 235

SP - 714

EP - 728

JO - Applied Energy

JF - Applied Energy

SN - 0306-2619

ER -