The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures

Christophe K. Kikankie, Basil D. Brooke, Bart Gj Knols, Lizette L. Koekemoer, Marit Farenhorst, Richard H. Hunt, Matthew B. Thomas, Maureen Coetzee

Research output: Contribution to journalArticle

34 Scopus citations

Abstract

Background. Control of the major African malaria vector species continues to rely extensively on the application of residual insecticides through indoor house spraying or bed net impregnation. Insecticide resistance is undermining the sustainability of these control strategies. Alternatives to the currently available conventional chemical insecticides are, therefore, urgently needed. Use of fungal pathogens as biopesticides is one such possibility. However, one of the challenges to the approach is the potential influence of varied environmental conditions and target species that could affect the efficacy of a biological 'active ingredient'. An initial investigation into this was carried out to assess the susceptibility of insecticide-susceptible and resistant laboratory strains and wild-collected Anopheles arabiensis mosquitoes to infection with the fungus Beauveria bassiana under two different laboratory temperature regimes. Methods. Insecticide susceptibility to all four classes of insecticides recommended by WHO for vector control was tested on laboratory and wild-caught An. arabiensis, using standard WHO bioassay protocols. Mosquito susceptibility to fungus infection was tested using dry spores of B. bassiana under two temperature regimes (21 1°C or 25 2°C) representative of indoor conditions observed in western Kenya. Cox regression analysis was used to assess the effect of fungal infection on mosquito survival and the effect of insecticide resistance status and temperature on mortality rates following fungus infection. Results. Survival data showed no relationship between insecticide susceptibility and susceptibility to B. bassiana. All tested colonies showed complete susceptibility to fungal infection despite some showing high resistance levels to chemical insecticides. There was, however, a difference in fungus-induced mortality rates between temperature treatments with virulence significantly higher at 25°C than 21°C. Even so, because malaria parasite development is also known to slow as temperatures fall, expected reductions in malaria transmission potential due to fungal infection under the cooler conditions would still be high. Conclusions. These results provide evidence that the entomopathogenic fungus B. bassiana has potential for use as an alternative vector control tool against insecticide-resistant mosquitoes under conditions typical of indoor resting environments. Nonetheless, the observed variation in effective virulence reveals the need for further study to optimize selection of isolates, dose and use strategy in different eco-epidemiological settings.

Original languageEnglish (US)
Article number71
JournalMalaria journal
Volume9
Issue number1
DOIs
StatePublished - 2010

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures'. Together they form a unique fingerprint.

  • Cite this