TY - JOUR
T1 - The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts
AU - Shao, Yuyan
AU - Kou, Rong
AU - Wang, Jun
AU - Viswanathan, Vilayanur V.
AU - Kwak, Ja Hun
AU - Liu, Jun
AU - Wang, Yong
AU - Lin, Yuehe
N1 - Funding Information:
This work is supported by the U.S. DOE-EERE Hydrogen Program. The research described in this paper was performed at the Environmental Molecular Science Laboratory, a national scientific used facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76L01830. Authors would like to acknowledge Mr. Mark Engelhard for XPS measurement and Dr. Chongmin Wang for TEM measurement.
PY - 2008/10/15
Y1 - 2008/10/15
N2 - The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2 V and 1.4 V vs. RHE) and potential step conditions with the upper potential of 1.4 V for 150 s and lower potential limits (0.85 V and 0.60 V) for 30 s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V_30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2 V- and 1.4 V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V_30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test protocol for screening durable catalyst support materials.
AB - The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2 V and 1.4 V vs. RHE) and potential step conditions with the upper potential of 1.4 V for 150 s and lower potential limits (0.85 V and 0.60 V) for 30 s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V_30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2 V- and 1.4 V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V_30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test protocol for screening durable catalyst support materials.
UR - http://www.scopus.com/inward/record.url?scp=50949115781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=50949115781&partnerID=8YFLogxK
U2 - 10.1016/j.jpowsour.2008.07.008
DO - 10.1016/j.jpowsour.2008.07.008
M3 - Article
AN - SCOPUS:50949115781
SN - 0378-7753
VL - 185
SP - 280
EP - 286
JO - Journal of Power Sources
JF - Journal of Power Sources
IS - 1
ER -