The life span of the biosphere revisited

Ken Caldeira, James F. Kasting

Research output: Contribution to journalArticle

160 Scopus citations

Abstract

A DECADE ago, Lovelock and Whitfield1 raised the question of how much longer the biosphere can survive on Earth. They pointed out that, despite the current fossil-fuel induced increase in the atmospheric COconcentration, the long-term trend should be in the opposite direction: as increased solar luminosity warms the Earth, silicate rocks should weather more readily, causing atmospheric COto decrease. In their model1, atmospheric COfalls below the critical level for C3 photosynthesis, 150 parts per million (p.p.m.), in only 100 Myr, and this is assumed to mark the demise of the biosphere as a whole. Here, we re-examine this problem using a more elaborate model that includes a more accurate treatment of the greenhouse effect of CO(refs 2-4), a biologically mediated weathering parameterization, and the realization that C4 photosynthesis can persist to much lower concentrations of atmospheric CO<10 p.p.m.)5,6. We find that a C4-plant-based biosphere could survive for at least another 0.9 Gyr to 1.5 Gyr after the present time, depending respectively on whether COor temperature is the limiting factor. Within an additional 1 Gyr, Earth may lose its water to space, thereby following the path of its sister planet, Venus.

Original languageEnglish (US)
Pages (from-to)721-723
Number of pages3
JournalNature
Volume360
Issue number6406
DOIs
StatePublished - Jan 1 1992

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'The life span of the biosphere revisited'. Together they form a unique fingerprint.

  • Cite this