TY - JOUR
T1 - The mechanical properties of plant cell walls soft material at the subcellular scale
T2 - the implications of water and of the intercellular boundaries
AU - Zamil, M. Shafayet
AU - Yi, Hojae
AU - Puri, Virendra M.
N1 - Funding Information:
This study was funded by the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090.
Publisher Copyright:
© 2015, Springer Science+Business Media New York.
PY - 2015/10/27
Y1 - 2015/10/27
N2 - Subcellular mechanical characterization of the cell wall can provide important insights into the cell wall’s functional organization, especially if the characterization is not confounded by extracellular factors and intercellular boundaries. However, due to the technical challenges associated with the microscale mechanical characterization of soft biological materials, subcellular investigations of the plant cell wall under tensile loading have yet to be properly performed. This study reports the mechanical characterization of primary onion epidermal cell wall profiles using a novel cryosection-based sample preparation method and a microelectromechanical system-based tensile testing protocol. At the subcellular scale, the cell wall showed biphasic behavior similar to tissue samples. However, instead of a transition zone between the linear elastic or viscoelastic and linear plastic zones, the subcellular-scale samples showed a plateau-like trend with a sharp drop in the modulus value. The critical ranges of stress (20–40 MPa) and strain (5–12 %) of the plateau zone were identified. A strain energy of 1.3 MJ m−3 was calculated at the midpoint of the critical stress–strain range; this value was in accordance with the previously estimated hydrogen bond energy of the cell wall. Subcellular-scale samples showed very large lateral/axial deformations (0.8 ± 0.13) at fracturing. In addition, investigating the cell wall’s mechanical properties at three different water states showed that water is critical for the flow-like behavior of cell wall matrix polymers. These results at subcellular scale provide new insights into biological materials that possess a structural hierarchy at different length scales; which cannot be obtained from tissue-scale experiments.
AB - Subcellular mechanical characterization of the cell wall can provide important insights into the cell wall’s functional organization, especially if the characterization is not confounded by extracellular factors and intercellular boundaries. However, due to the technical challenges associated with the microscale mechanical characterization of soft biological materials, subcellular investigations of the plant cell wall under tensile loading have yet to be properly performed. This study reports the mechanical characterization of primary onion epidermal cell wall profiles using a novel cryosection-based sample preparation method and a microelectromechanical system-based tensile testing protocol. At the subcellular scale, the cell wall showed biphasic behavior similar to tissue samples. However, instead of a transition zone between the linear elastic or viscoelastic and linear plastic zones, the subcellular-scale samples showed a plateau-like trend with a sharp drop in the modulus value. The critical ranges of stress (20–40 MPa) and strain (5–12 %) of the plateau zone were identified. A strain energy of 1.3 MJ m−3 was calculated at the midpoint of the critical stress–strain range; this value was in accordance with the previously estimated hydrogen bond energy of the cell wall. Subcellular-scale samples showed very large lateral/axial deformations (0.8 ± 0.13) at fracturing. In addition, investigating the cell wall’s mechanical properties at three different water states showed that water is critical for the flow-like behavior of cell wall matrix polymers. These results at subcellular scale provide new insights into biological materials that possess a structural hierarchy at different length scales; which cannot be obtained from tissue-scale experiments.
UR - http://www.scopus.com/inward/record.url?scp=84938998074&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938998074&partnerID=8YFLogxK
U2 - 10.1007/s10853-015-9204-9
DO - 10.1007/s10853-015-9204-9
M3 - Article
AN - SCOPUS:84938998074
SN - 0022-2461
VL - 50
SP - 6608
EP - 6623
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 20
ER -