### Abstract

In 1974. Cline, Plemmons and Worm showed that A† is a k-circulant matrix if and only if A is k-circulant with |k| = 1. However they left open the nature of A† when |k| ≠ 1. We present a simple derivation of the Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix.

Original language | English (US) |
---|---|

Pages (from-to) | 175-179 |

Number of pages | 5 |

Journal | Linear and Multilinear Algebra |

Volume | 50 |

Issue number | 2 |

DOIs | |

State | Published - Jun 1 2002 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Algebra and Number Theory

### Cite this

}

*Linear and Multilinear Algebra*, vol. 50, no. 2, pp. 175-179. https://doi.org/10.1080/03081080290019559

**The Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix.** / Boman, Eugene.

Research output: Contribution to journal › Article

TY - JOUR

T1 - The Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix

AU - Boman, Eugene

PY - 2002/6/1

Y1 - 2002/6/1

N2 - In 1974. Cline, Plemmons and Worm showed that A† is a k-circulant matrix if and only if A is k-circulant with |k| = 1. However they left open the nature of A† when |k| ≠ 1. We present a simple derivation of the Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix.

AB - In 1974. Cline, Plemmons and Worm showed that A† is a k-circulant matrix if and only if A is k-circulant with |k| = 1. However they left open the nature of A† when |k| ≠ 1. We present a simple derivation of the Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix.

UR - http://www.scopus.com/inward/record.url?scp=0036622719&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036622719&partnerID=8YFLogxK

U2 - 10.1080/03081080290019559

DO - 10.1080/03081080290019559

M3 - Article

AN - SCOPUS:0036622719

VL - 50

SP - 175

EP - 179

JO - Linear and Multilinear Algebra

JF - Linear and Multilinear Algebra

SN - 0308-1087

IS - 2

ER -