The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

Limb immobilization, limb suspension, and bed rest cause substantial loss of skeletal muscle mass, a phenomenon termed disuse atrophy. To acquire new knowledge that will assist in the development of therapeutic strategies for minimizing disuse atrophy, the present study was undertaken with the aim of identifying molecular mechanisms that mediate control of protein synthesis and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Male Sprague-Dawley rats were subjected to unilateral hindlimb immobilization for 1, 2, 3, or 7 days or served as nonimmobilized controls. Following an overnight fast, rats received either saline or L-leucine by oral gavage as a nutrient stimulus. Hindlimb skeletal muscles were extracted 30 min postgavage and analyzed for the rate of protein synthesis, mRNA expression, phosphorylation state of key proteins in the mTORC1 signaling pathway, and mTORC1 signaling repressors. In the basal state, mTORC1 signaling and protein synthesis were repressed within 24 h in the soleus of an immobilized compared with a nonimmobilized hindlimb. These responses were accompanied by a concomitant induction in expression of the mTORC1 repressors regulated in development and DNA damage responses (REDD) 1/2. The nutrient stimulus produced an elevation of similar magnitude in mTORC1 signaling in both the immobilized and nonimmobilized muscle. In contrast, phosphorylation of 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) on Thr229 and Thr389 in response to the nutrient stimulus was severely blunted. Phosphorylation of Thr229 by PDK1 is a prerequisite for phosphorylation of Thr389 by mTORC1, suggesting that signaling through PDK1 is impaired in response to immobilization. In conclusion, the results show an immobilization-induced attenuation of mTORC1 signaling mediated by induction of REDD1/2 and defective p70S6K1 phosphorylation.

Original languageEnglish (US)
Pages (from-to)E229-E236
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume304
Issue number2
DOIs
StatePublished - Jan 15 2013

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb'. Together they form a unique fingerprint.

Cite this