The organoselenium compound 1,4-phenylenebis(methylene)selenocyanate inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorgenesis and enhances glutathione-related antioxidant levels in A/J mouse lung

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Selenium, in the form of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) but not Se-enriched yeast (Se-yeast), was highly effective at inhibiting lung tumors induced by the tobacco specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and at reducing NNK-induced DNA methylation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the lung. Our goal was to determine if p-XSC but not Se-yeast is effective at inducing levels of glutathione (GSH)-related antioxidants and reducing markers of GSH oxidation in the NNK-induced lung tumor model. In the first bioassay, 6-week-old mice were fed either control or experimental diets (containing 10 ppm as selenium from p-XSC or Se-yeast) and, beginning at 8 weeks of age, received NNK (3 μmol) by gavage once weekly for 8 weeks. After 18 weeks, p-XSC significantly reduced NNK-induced tumor burden by 74% (10.4 ± 6.0 versus 2.7 ± 1.5 tumors/mouse, P < 0.001) and tumor incidence from 96% to 68% (P < 0.01), whereas, Se-yeast had no effect. Lung GSH levels were unchanged by either NNK or Se-yeast, but were increased 70% in mice treated with both NNK and p-XSC (P < 0.01) and 41% in mice treated with p-XSC alone. In the second bioassay, the time course of effects of p-XSC was examined. As early as one week after initiation of p-XSC feeding lung and blood selenium levels were increased nearly six- and two-fold, respectively. Increases of 120% for GSH and 65% for Cys were observed in p-XSC groups compared to controls within one week after initiation of p-XSC feeding (P < 0.01). The levels of protein-bound:free GSH ratios and Cys ratios were significantly decreased in p-XSC-treated mice, regardless of NNK status, suggesting a decrease in the levels of oxidative stress. Altogether, these results indicate that p-XSC is a potent inducer of GSH and related thiol antioxidants in the lung leading to decreased levels of oxidative stress and suggest that p-XSC inhibits tumor formation, in part, by protecting against oxidative damage.

Original languageEnglish (US)
Pages (from-to)93-103
Number of pages11
JournalChemico-Biological Interactions
Volume161
Issue number2
DOIs
StatePublished - Jun 10 2006

Fingerprint

Organoselenium Compounds
Glutathione
Tumors
Yeast
Antioxidants
Yeasts
Lung
Selenium
Oxidative stress
Bioassay
Neoplasms
Biological Assay
Oxidative Stress
Nitrosamines
Tobacco
DNA Methylation
Nutrition
Tumor Burden
Sulfhydryl Compounds
1,4-phenylenebis(methylene)selenocyanate

All Science Journal Classification (ASJC) codes

  • Toxicology

Cite this

@article{9f57264db1924e28bd8d52289954aaad,
title = "The organoselenium compound 1,4-phenylenebis(methylene)selenocyanate inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorgenesis and enhances glutathione-related antioxidant levels in A/J mouse lung",
abstract = "Selenium, in the form of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) but not Se-enriched yeast (Se-yeast), was highly effective at inhibiting lung tumors induced by the tobacco specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and at reducing NNK-induced DNA methylation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the lung. Our goal was to determine if p-XSC but not Se-yeast is effective at inducing levels of glutathione (GSH)-related antioxidants and reducing markers of GSH oxidation in the NNK-induced lung tumor model. In the first bioassay, 6-week-old mice were fed either control or experimental diets (containing 10 ppm as selenium from p-XSC or Se-yeast) and, beginning at 8 weeks of age, received NNK (3 μmol) by gavage once weekly for 8 weeks. After 18 weeks, p-XSC significantly reduced NNK-induced tumor burden by 74{\%} (10.4 ± 6.0 versus 2.7 ± 1.5 tumors/mouse, P < 0.001) and tumor incidence from 96{\%} to 68{\%} (P < 0.01), whereas, Se-yeast had no effect. Lung GSH levels were unchanged by either NNK or Se-yeast, but were increased 70{\%} in mice treated with both NNK and p-XSC (P < 0.01) and 41{\%} in mice treated with p-XSC alone. In the second bioassay, the time course of effects of p-XSC was examined. As early as one week after initiation of p-XSC feeding lung and blood selenium levels were increased nearly six- and two-fold, respectively. Increases of 120{\%} for GSH and 65{\%} for Cys were observed in p-XSC groups compared to controls within one week after initiation of p-XSC feeding (P < 0.01). The levels of protein-bound:free GSH ratios and Cys ratios were significantly decreased in p-XSC-treated mice, regardless of NNK status, suggesting a decrease in the levels of oxidative stress. Altogether, these results indicate that p-XSC is a potent inducer of GSH and related thiol antioxidants in the lung leading to decreased levels of oxidative stress and suggest that p-XSC inhibits tumor formation, in part, by protecting against oxidative damage.",
author = "John Richie and Wayne Kleinman and Dhimant Desai and Arunangshu Das and Shantu Amin and Pinto, {John T.} and Karam El-Bayoumy",
year = "2006",
month = "6",
day = "10",
doi = "10.1016/j.cbi.2006.03.005",
language = "English (US)",
volume = "161",
pages = "93--103",
journal = "Chemico-Biological Interactions",
issn = "0009-2797",
publisher = "Elsevier Ireland Ltd",
number = "2",

}

TY - JOUR

T1 - The organoselenium compound 1,4-phenylenebis(methylene)selenocyanate inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorgenesis and enhances glutathione-related antioxidant levels in A/J mouse lung

AU - Richie, John

AU - Kleinman, Wayne

AU - Desai, Dhimant

AU - Das, Arunangshu

AU - Amin, Shantu

AU - Pinto, John T.

AU - El-Bayoumy, Karam

PY - 2006/6/10

Y1 - 2006/6/10

N2 - Selenium, in the form of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) but not Se-enriched yeast (Se-yeast), was highly effective at inhibiting lung tumors induced by the tobacco specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and at reducing NNK-induced DNA methylation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the lung. Our goal was to determine if p-XSC but not Se-yeast is effective at inducing levels of glutathione (GSH)-related antioxidants and reducing markers of GSH oxidation in the NNK-induced lung tumor model. In the first bioassay, 6-week-old mice were fed either control or experimental diets (containing 10 ppm as selenium from p-XSC or Se-yeast) and, beginning at 8 weeks of age, received NNK (3 μmol) by gavage once weekly for 8 weeks. After 18 weeks, p-XSC significantly reduced NNK-induced tumor burden by 74% (10.4 ± 6.0 versus 2.7 ± 1.5 tumors/mouse, P < 0.001) and tumor incidence from 96% to 68% (P < 0.01), whereas, Se-yeast had no effect. Lung GSH levels were unchanged by either NNK or Se-yeast, but were increased 70% in mice treated with both NNK and p-XSC (P < 0.01) and 41% in mice treated with p-XSC alone. In the second bioassay, the time course of effects of p-XSC was examined. As early as one week after initiation of p-XSC feeding lung and blood selenium levels were increased nearly six- and two-fold, respectively. Increases of 120% for GSH and 65% for Cys were observed in p-XSC groups compared to controls within one week after initiation of p-XSC feeding (P < 0.01). The levels of protein-bound:free GSH ratios and Cys ratios were significantly decreased in p-XSC-treated mice, regardless of NNK status, suggesting a decrease in the levels of oxidative stress. Altogether, these results indicate that p-XSC is a potent inducer of GSH and related thiol antioxidants in the lung leading to decreased levels of oxidative stress and suggest that p-XSC inhibits tumor formation, in part, by protecting against oxidative damage.

AB - Selenium, in the form of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) but not Se-enriched yeast (Se-yeast), was highly effective at inhibiting lung tumors induced by the tobacco specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and at reducing NNK-induced DNA methylation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the lung. Our goal was to determine if p-XSC but not Se-yeast is effective at inducing levels of glutathione (GSH)-related antioxidants and reducing markers of GSH oxidation in the NNK-induced lung tumor model. In the first bioassay, 6-week-old mice were fed either control or experimental diets (containing 10 ppm as selenium from p-XSC or Se-yeast) and, beginning at 8 weeks of age, received NNK (3 μmol) by gavage once weekly for 8 weeks. After 18 weeks, p-XSC significantly reduced NNK-induced tumor burden by 74% (10.4 ± 6.0 versus 2.7 ± 1.5 tumors/mouse, P < 0.001) and tumor incidence from 96% to 68% (P < 0.01), whereas, Se-yeast had no effect. Lung GSH levels were unchanged by either NNK or Se-yeast, but were increased 70% in mice treated with both NNK and p-XSC (P < 0.01) and 41% in mice treated with p-XSC alone. In the second bioassay, the time course of effects of p-XSC was examined. As early as one week after initiation of p-XSC feeding lung and blood selenium levels were increased nearly six- and two-fold, respectively. Increases of 120% for GSH and 65% for Cys were observed in p-XSC groups compared to controls within one week after initiation of p-XSC feeding (P < 0.01). The levels of protein-bound:free GSH ratios and Cys ratios were significantly decreased in p-XSC-treated mice, regardless of NNK status, suggesting a decrease in the levels of oxidative stress. Altogether, these results indicate that p-XSC is a potent inducer of GSH and related thiol antioxidants in the lung leading to decreased levels of oxidative stress and suggest that p-XSC inhibits tumor formation, in part, by protecting against oxidative damage.

UR - http://www.scopus.com/inward/record.url?scp=33646826380&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646826380&partnerID=8YFLogxK

U2 - 10.1016/j.cbi.2006.03.005

DO - 10.1016/j.cbi.2006.03.005

M3 - Article

C2 - 16620795

AN - SCOPUS:33646826380

VL - 161

SP - 93

EP - 103

JO - Chemico-Biological Interactions

JF - Chemico-Biological Interactions

SN - 0009-2797

IS - 2

ER -