The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions

J. Christopher Corton, Jeffrey M. Peters, James E. Klaunig

Research output: Contribution to journalReview article

25 Citations (Scopus)

Abstract

A number of industrial chemicals and therapeutic agents cause liver tumors in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). The molecular and cellular events by which PPARα activators induce rodent hepatocarcinogenesis have been extensively studied elucidating a number of consistent mechanistic changes linked to the increased incidence of liver neoplasms. The weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis is summarized here. Chemical-specific and mechanistic data support concordance of temporal and dose–response relationships for the key events associated with many PPARα activators. The key events (KE) identified in the MOA are PPARα activation (KE1), alteration in cell growth pathways (KE2), perturbation of hepatocyte growth and survival (KE3), and selective clonal expansion of preneoplastic foci cells (KE4), which leads to the apical event—increases in hepatocellular adenomas and carcinomas (KE5). In addition, a number of concurrent molecular and cellular events have been classified as modulating factors, because they potentially alter the ability of PPARα activators to increase rodent liver cancer while not being key events themselves. These modulating factors include increases in oxidative stress and activation of NF-kB. PPARα activators are unlikely to induce liver tumors in humans due to biological differences in the response of KEs downstream of PPARα activation. This conclusion is based on minimal or no effects observed on cell growth pathways and hepatocellular proliferation in human primary hepatocytes and absence of alteration in growth pathways, hepatocyte proliferation, and tumors in the livers of species (hamsters, guinea pigs and cynomolgus monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Despite this overwhelming body of evidence and almost universal acceptance of the PPARα MOA and lack of human relevance, several reviews have selectively focused on specific studies that, as discussed, contradict the consensus opinion and suggest uncertainty. In the present review, we systematically address these most germane suggested weaknesses of the PPARα MOA.

Original languageEnglish (US)
Pages (from-to)83-119
Number of pages37
JournalArchives of Toxicology
Volume92
Issue number1
DOIs
StatePublished - Jan 1 2018

Fingerprint

Peroxisome Proliferator-Activated Receptors
Liver
Tumors
Rodentia
Neoplasms
Hepatocytes
Chemical activation
Cell growth
Liver Neoplasms
Growth
Rats
Liver Cell Adenoma
Industrial chemicals
Oxidative stress
Macaca fascicularis
NF-kappa B
Cytoplasmic and Nuclear Receptors
Cricetinae
Uncertainty
Hepatocellular Carcinoma

All Science Journal Classification (ASJC) codes

  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this

@article{26eee4269a9d41569bf2f117666ac05c,
title = "The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions",
abstract = "A number of industrial chemicals and therapeutic agents cause liver tumors in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). The molecular and cellular events by which PPARα activators induce rodent hepatocarcinogenesis have been extensively studied elucidating a number of consistent mechanistic changes linked to the increased incidence of liver neoplasms. The weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis is summarized here. Chemical-specific and mechanistic data support concordance of temporal and dose–response relationships for the key events associated with many PPARα activators. The key events (KE) identified in the MOA are PPARα activation (KE1), alteration in cell growth pathways (KE2), perturbation of hepatocyte growth and survival (KE3), and selective clonal expansion of preneoplastic foci cells (KE4), which leads to the apical event—increases in hepatocellular adenomas and carcinomas (KE5). In addition, a number of concurrent molecular and cellular events have been classified as modulating factors, because they potentially alter the ability of PPARα activators to increase rodent liver cancer while not being key events themselves. These modulating factors include increases in oxidative stress and activation of NF-kB. PPARα activators are unlikely to induce liver tumors in humans due to biological differences in the response of KEs downstream of PPARα activation. This conclusion is based on minimal or no effects observed on cell growth pathways and hepatocellular proliferation in human primary hepatocytes and absence of alteration in growth pathways, hepatocyte proliferation, and tumors in the livers of species (hamsters, guinea pigs and cynomolgus monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Despite this overwhelming body of evidence and almost universal acceptance of the PPARα MOA and lack of human relevance, several reviews have selectively focused on specific studies that, as discussed, contradict the consensus opinion and suggest uncertainty. In the present review, we systematically address these most germane suggested weaknesses of the PPARα MOA.",
author = "Corton, {J. Christopher} and Peters, {Jeffrey M.} and Klaunig, {James E.}",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/s00204-017-2094-7",
language = "English (US)",
volume = "92",
pages = "83--119",
journal = "Archiv fur Toxikologie",
issn = "0003-9446",
publisher = "Springer Verlag",
number = "1",

}

The PPARα-dependent rodent liver tumor response is not relevant to humans : addressing misconceptions. / Corton, J. Christopher; Peters, Jeffrey M.; Klaunig, James E.

In: Archives of Toxicology, Vol. 92, No. 1, 01.01.2018, p. 83-119.

Research output: Contribution to journalReview article

TY - JOUR

T1 - The PPARα-dependent rodent liver tumor response is not relevant to humans

T2 - addressing misconceptions

AU - Corton, J. Christopher

AU - Peters, Jeffrey M.

AU - Klaunig, James E.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - A number of industrial chemicals and therapeutic agents cause liver tumors in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). The molecular and cellular events by which PPARα activators induce rodent hepatocarcinogenesis have been extensively studied elucidating a number of consistent mechanistic changes linked to the increased incidence of liver neoplasms. The weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis is summarized here. Chemical-specific and mechanistic data support concordance of temporal and dose–response relationships for the key events associated with many PPARα activators. The key events (KE) identified in the MOA are PPARα activation (KE1), alteration in cell growth pathways (KE2), perturbation of hepatocyte growth and survival (KE3), and selective clonal expansion of preneoplastic foci cells (KE4), which leads to the apical event—increases in hepatocellular adenomas and carcinomas (KE5). In addition, a number of concurrent molecular and cellular events have been classified as modulating factors, because they potentially alter the ability of PPARα activators to increase rodent liver cancer while not being key events themselves. These modulating factors include increases in oxidative stress and activation of NF-kB. PPARα activators are unlikely to induce liver tumors in humans due to biological differences in the response of KEs downstream of PPARα activation. This conclusion is based on minimal or no effects observed on cell growth pathways and hepatocellular proliferation in human primary hepatocytes and absence of alteration in growth pathways, hepatocyte proliferation, and tumors in the livers of species (hamsters, guinea pigs and cynomolgus monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Despite this overwhelming body of evidence and almost universal acceptance of the PPARα MOA and lack of human relevance, several reviews have selectively focused on specific studies that, as discussed, contradict the consensus opinion and suggest uncertainty. In the present review, we systematically address these most germane suggested weaknesses of the PPARα MOA.

AB - A number of industrial chemicals and therapeutic agents cause liver tumors in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). The molecular and cellular events by which PPARα activators induce rodent hepatocarcinogenesis have been extensively studied elucidating a number of consistent mechanistic changes linked to the increased incidence of liver neoplasms. The weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis is summarized here. Chemical-specific and mechanistic data support concordance of temporal and dose–response relationships for the key events associated with many PPARα activators. The key events (KE) identified in the MOA are PPARα activation (KE1), alteration in cell growth pathways (KE2), perturbation of hepatocyte growth and survival (KE3), and selective clonal expansion of preneoplastic foci cells (KE4), which leads to the apical event—increases in hepatocellular adenomas and carcinomas (KE5). In addition, a number of concurrent molecular and cellular events have been classified as modulating factors, because they potentially alter the ability of PPARα activators to increase rodent liver cancer while not being key events themselves. These modulating factors include increases in oxidative stress and activation of NF-kB. PPARα activators are unlikely to induce liver tumors in humans due to biological differences in the response of KEs downstream of PPARα activation. This conclusion is based on minimal or no effects observed on cell growth pathways and hepatocellular proliferation in human primary hepatocytes and absence of alteration in growth pathways, hepatocyte proliferation, and tumors in the livers of species (hamsters, guinea pigs and cynomolgus monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Despite this overwhelming body of evidence and almost universal acceptance of the PPARα MOA and lack of human relevance, several reviews have selectively focused on specific studies that, as discussed, contradict the consensus opinion and suggest uncertainty. In the present review, we systematically address these most germane suggested weaknesses of the PPARα MOA.

UR - http://www.scopus.com/inward/record.url?scp=85033395260&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85033395260&partnerID=8YFLogxK

U2 - 10.1007/s00204-017-2094-7

DO - 10.1007/s00204-017-2094-7

M3 - Review article

C2 - 29197930

AN - SCOPUS:85033395260

VL - 92

SP - 83

EP - 119

JO - Archiv fur Toxikologie

JF - Archiv fur Toxikologie

SN - 0003-9446

IS - 1

ER -