The proline rich region of the Tec homology domain of ITK regulates its activity

Shengli Hao, Avery August

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Inducible T-cell kinase (ITK) is a member of the Tec family of tyrosine kinases that are involved in signals emanating from cytokine receptors, antigen receptors and other lymphoid cell surface receptors. Stimulation of tyrosine phosphorylation and activation of ITK by the T-cell antigen receptor, CD28 and CD2 requires the presence of the Src family kinase Lck in T-cells. We have previously demonstrated that the activation of ITK by Src family kinases uses a phosphatidylinositol 3-kinase pathway, which recruits ITK to the membrane via its pleckstrin homology (PH) domain where it is acted upon by Src. We have further explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that deletion of the proline rich sequence found in the Tec homology domain of ITK results in reduced basal activity of ITK approximately 50%. These differences in the basal activity of ITK were observed when the PH domain was deleted or when the kinase was membrane targeted. Furthermore, this deletion reduces the ability of the Src family kinase Lck to activate ITK, as well as to induce the ITK mediated tyrosine phosphorylation of its substrate PLCγ1. By contrast, deletion of the SH3 domain of ITK resulted in a two-fold increase in the basal activity of ITK, and allowed this mutant to have an enhanced response to Lck. These results suggest that the proline rich region within the Tec homology domain of ITK regulates its basal activity and its response to Src family kinase signals.

Original languageEnglish (US)
Pages (from-to)53-58
Number of pages6
JournalFEBS Letters
Volume525
Issue number1-3
DOIs
StatePublished - Aug 14 2002

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Genetics
  • Cell Biology

Fingerprint Dive into the research topics of 'The proline rich region of the Tec homology domain of ITK regulates its activity'. Together they form a unique fingerprint.

Cite this