The rational torsion subgroups of Drinfeld modular Jacobians and Eisenstein pseudo-harmonic cochains

Mihran Papikian, Fu Tsun Wei

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let n be a square-free ideal of Fq[ T]. We study the rational torsion subgroup of the Jacobian variety J0(n) of the Drinfeld modular curve X0(n). We prove that for any prime number ℓ not dividing q(q- 1) , the ℓ-primary part of this group coincides with that of the cuspidal divisor class group. We further determine the structure of the ℓ-primary part of the cuspidal divisor class group for any prime ℓ not dividing q- 1.

Original languageEnglish (US)
Pages (from-to)521-546
Number of pages26
JournalMathematische Zeitschrift
Volume287
Issue number1-2
DOIs
StatePublished - Dec 26 2017

Fingerprint

Divisor Class Group
Torsion
Harmonic
Subgroup
Jacobian Varieties
Modular Curves
Square free
Prime number

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{d076ec3e50eb4603b75d295ea9ccac20,
title = "The rational torsion subgroups of Drinfeld modular Jacobians and Eisenstein pseudo-harmonic cochains",
abstract = "Let n be a square-free ideal of Fq[ T]. We study the rational torsion subgroup of the Jacobian variety J0(n) of the Drinfeld modular curve X0(n). We prove that for any prime number ℓ not dividing q(q- 1) , the ℓ-primary part of this group coincides with that of the cuspidal divisor class group. We further determine the structure of the ℓ-primary part of the cuspidal divisor class group for any prime ℓ not dividing q- 1.",
author = "Mihran Papikian and Wei, {Fu Tsun}",
year = "2017",
month = "12",
day = "26",
doi = "10.1007/s00209-016-1835-2",
language = "English (US)",
volume = "287",
pages = "521--546",
journal = "Mathematische Zeitschrift",
issn = "0025-5874",
publisher = "Springer New York",
number = "1-2",

}

The rational torsion subgroups of Drinfeld modular Jacobians and Eisenstein pseudo-harmonic cochains. / Papikian, Mihran; Wei, Fu Tsun.

In: Mathematische Zeitschrift, Vol. 287, No. 1-2, 26.12.2017, p. 521-546.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The rational torsion subgroups of Drinfeld modular Jacobians and Eisenstein pseudo-harmonic cochains

AU - Papikian, Mihran

AU - Wei, Fu Tsun

PY - 2017/12/26

Y1 - 2017/12/26

N2 - Let n be a square-free ideal of Fq[ T]. We study the rational torsion subgroup of the Jacobian variety J0(n) of the Drinfeld modular curve X0(n). We prove that for any prime number ℓ not dividing q(q- 1) , the ℓ-primary part of this group coincides with that of the cuspidal divisor class group. We further determine the structure of the ℓ-primary part of the cuspidal divisor class group for any prime ℓ not dividing q- 1.

AB - Let n be a square-free ideal of Fq[ T]. We study the rational torsion subgroup of the Jacobian variety J0(n) of the Drinfeld modular curve X0(n). We prove that for any prime number ℓ not dividing q(q- 1) , the ℓ-primary part of this group coincides with that of the cuspidal divisor class group. We further determine the structure of the ℓ-primary part of the cuspidal divisor class group for any prime ℓ not dividing q- 1.

UR - http://www.scopus.com/inward/record.url?scp=85007242775&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85007242775&partnerID=8YFLogxK

U2 - 10.1007/s00209-016-1835-2

DO - 10.1007/s00209-016-1835-2

M3 - Article

AN - SCOPUS:85007242775

VL - 287

SP - 521

EP - 546

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 0025-5874

IS - 1-2

ER -